
Machine Learning
for Software Engineering

AI in SE Team

24 November 2021

Agenda

1. Software engineering: context and challenges

2. Overview of problems

3. AI for source code analysis and comprehension
• Source code representations
• Notable approaches in details

4. Promising future work and useful materials

2/83

Software complexity growth

• Software "is eating"the world

• Increased size and complexity

• Increased number of
vulnerabilities

• Shortage of talents

• Productivity gap

3/83

Software vulnerabilities growth

4/83

Productivity gap

5/83

Traditional methods and tools

Quality assurance:
• Manual testing and hand-written tests (e.g. unit, integration)
• Manual code review
• Static analysis for source code and binaries (e.g. memory leak checkers)
• Dynamic analysis of software (e.g. fuzzing)

Productivity tools:
• Version control systems
• IDEs and LSP servers
• Continuous integration (CI) systems
• Container and cloud systems

6/83

Problems with traditional tools

• Precise but expensive

• Certain tools are based on hand-crafted rules

• Inefficient usage of large amounts of available data

• Inability to detect certain issues and routine tasks that can’t be automated

• Inefficient usage of system and human resources

Key takeaway
There is a need for complementary tools to reduce cognitive overload and to
optimize software engeneering activities.

7/83

Software engineering activities

8/83

AI and data-driven approaches for the rescue

Large amounts of valuable data from different sources:

• Source code is the data itself (e.g. 200 million repositories on Github)

• Development history (version control, code review)

• User interaction data, failures and monitoring data from production

• Issues from bug trackers and question-answering platforms (e.g. SO)

• Data from programming contests

We can apply ML and data driven approaches to optimize SE
activities and solve downstream tasks

9/83

Scope of AI4SE

10/83

Source code analysis and
comprehension

Actively researched areas and tasks

Widespread:

• Source code summarization (commit text generation, name suggestion)
• Defect, code smell and tecnhical debt detection
• Semantic code search (similar code; by natural language query)
• Edit/fix pattern discovery and suggestion
• Neural program synthesis, transformation and repair

More rare:

• Refactoring detection and suggestion
• Intelligent source code autocompletion
• Bug, developer and reiviewer triaging

11/83

Companies, research groups and tools

Research and development:

• Microsoft (Deep Program Understanding Research Group, CoPilot)

• Facebook AI Research (Aroma, GetaFix, CompilerGym)

• Google Research (CuBERT, program synthesis)

• JetBrains (Machine Learning Methods in Software Engineering)

Production tools:

• Kite and TabNine for intelligent autocompletion

• DeepCode and Embold to find and fix vulnerabilities in code

• Sourcery and IBM’s Mono2Micro for AI-assisted refactoring

12/83

Source code representations

• Source code and change metrics
• Source code token sequences
• Abstract Syntax Tree (AST)
• Edit sequences
• Lower-level intermediate representation (e.g. Control and Data Flow graphs,

LLVM IR)

13/83

Source code and change metrics

• Derived after the code or edit is processed
• Can be computed on different abstraction levels (e.g. method)
• Sufficient for certain tasks (e.g. commit filtering or code smell detection)

14/83

Abstract Syntax Tree (AST)

15/83

Low-level intermediate represenations

16/83

Obtaining raw representations

Language specific parsers
Good parsing quality, but often require building source code

• Clang/LLVM or GCC for C/C++

• Roslyn for C#

• ast module for Python

• javaparser for Java

Language agnostic parsers
Lightweight in exchange for parsing quality and loss of semantics

• srcML – lightweight multi-language parsing tool

• tree-sitter and ANTL parser generator tools
17/83

A Convolutional Attention
Network for Extreme
Summarization of Code (2016)

Introduction

Problem
Extreme summarization of source code snippets into short, descriptive function
name-like summaries.

Motivation:

• Learning to summarize source code has important applications in software
engineering, such as in code understanding and in code search

• Lack of comprehensive evaluation of algorithms on real-world data
• Previous architectures used either hard-coded features or do not

extracttranslation-invariant features specifically
• Solution: introduce a special attentional neural network that employs

convolution on the input tokens in acontext-dependent way
18/83

Source code summarization

19/83

PL summarization specifics

Differences from NL summarization

• source code is mostly unambiguous and highly structured

• need to learn how the code instructions compose into a higher-level meaning

• necessity to learn patterns in code that use both structure and identifiers

Differences from translation

• input source code sequence large and the output summary small

• need to extract both temporally invariant and sentence-wide features

• source code presents the challenge of out-of-vocabulary words

20/83

Convolutional Attention Model: Inputs

• Input sequence of subtokens c = [c<s>, c1, . . . , cN , c</s>]

• Output sequence of subtokens m = [m<s>,m1, . . . ,mM ,m</s>]

• < s > and < /s > – special sub-tokens for start and end

Example:

[< s >, try , {, return, render , requested , . . .], [< s >, should , render , < /s >] 21/83

Convolutional Attention Model

• Model predicts each subtoken sequentially P(mt |m<s>, . . . ,mt−1, c)

• Subtokens m<s>, . . . ,mt−1 are passed into RNN that represents the input
state with a vector ht−1

• ht−1 and subtoken embeddings are used to compute matrix of attention
features Lfeat

• Lfeat is used to compute one or more normalized attention vectors

• vectors are used to predict probability distribution over targets mi

22/83

Convolutional Attention Model

• E ∈ R|V |×D – D-dimensional subtoken embeddings
• Kl1 ∈ RD×w1×k1 and Kl2 ∈ Rk1×w2×k2 – convolution kernels
• ht−1 ∈ Rk2 – information from previous subtokens
• Lfeat ∈ R(len(c)+const)×k2 , k2 features for each location
• ht is computed using GRU

23/83

Convolutional Attention Model

24/83

Convolutional Attention Model

• n inRD – target embedding

• b ∈ R|V | – bias vector

• n ∈ R|V | – probability ditribution

• ToMap – returns a map of each subtoken vi ∈ V

• model is trained using max. likelihood

25/83

Training setup

• 11 most popular Java open source projects

• extraction of methods with preprocessing
1. filtering out overrides, constructors and abstract methods using static analysis
2. substituion of tokens in recursive methods with self
3. split intop subtokens

• SGD with RMSProp, Nesterov momentum, dropout and gradient clipping

• optimized hyperparameters are k1 = k2 = 8,w1 = 24,w2 = 29,w3 = 10

dropout rate 50% and D = 128

• Measure Exact match and per-subtoken F1

26/83

Evaluation: Projects

27/83

Evaluation: Averaged

28/83

Examples

29/83

code2seq: Generating
Sequences from Structured
Representations of Code
(2019)

Idea

Problem
Generate source code description in natural language

Motivation:

• Existing solutions use seq2seq — source code is represented as token
sequence

• Problem: loss of structural information about program (syntax and
semantics)

• Suggested solution: use abstract syntax tree (AST) representation for
source code

30/83

Useful properties of AST

• Finite number of nodes

• Unified source code
representation

• Allows to work with any
programming language

31/83

Vector representation of source code

32/83

Model

• Input – a set of paths between leaf nodes in AST x = (x1, ..., xk), where
xi = (vi1 , ..., vili) is a node sequence

• Standard NMT architecture
• Encoder transforms a sequence of AST paths (x) into a sequence of vectors

of fixed size z = (z1, ..., zk)

• Decoder generates a sequence of output tokens one-by-one y = (y1, ..., ym)

• During decoding the probability of next token depends on the previously
decoded ones:

p(y1, ..., ym|x1, ..., xn) =
m∏
j=1

p(yj |y<j , z1, ..., zn)

33/83

Encoding

Encoded AST path x is represented as follows:

h1, ...,hl = BiLSTM(Enodes
v1

, ...,Enodes
vl

)

encode_path(v1, ..., vl) = [h→l ;h←1],

where Enodes — embedding matrix (a set of AST nodes is finite)

Tokens of different case types (e.g. camelCase, snake_case, kebab-case) are
tokenized:

encode_token(t) =
∑

s∈split(t)

Esubtokens
s

34/83

Encoding results

z = tanh(Win[encode_path(v1, ..., vl); encode_token(value(v1));

encode_token(value(vl))]),

where Win — matrix of size (2dpath + 2dtoken)× dhidden

35/83

Network architecture

Initial decoder state: h0 =
1
k

∑k
i=1 zk

Attention layer is responsible for selecting only relevant paths

36/83

Experiment A

37/83

Experiment A: results

38/83

Dependency on code size

39/83

Experiment B

40/83

Experiment B: results

Dataset is a set of pairs (question, answer) from StackOverflow for C# language

41/83

Selecting number of paths k

Results were collected with k = 200 (the number of paths for one AST). This
value was picked empirically. Average number of paths in one AST is 220.

Values of k > 300 do not provide any improvements, except for rare large
examples. Values of k < 100 significantly reduce the model performance.
Moreover, it was shown that k = 200 is optimal for an average GPU.

42/83

Neural net architecture selection

43/83

CodeBERT: A Pre-Trained
Model for Programming and
Natural Languages (2020)

CodeBERT: Idea

Problem
Learn general-purpose code representations that support downstream NL-PL
applications.

Motivation:

• Existing solutions for NLP tasks use only natural language training data.
• Problem: there is no semantic connection between programming code and

its natural description for such problems as natural language code search,
code documentation generation

• Suggested solution: use multi-modal approach to connect natural language
and source code

44/83

CodeBERT: Bimodal data

• Bimodal approach is using two different types of data to detect semantic
connection

• Multi-modal pre-trained model, like VideoBERT, ImageBERT

45/83

CodeBERT: Pre-traininig data

• Dataset used is CodesearchNet challenge
• Train on bimodal data (natural language - programming language)
• Model was trained both on bimodal and unimodal (PL without documents)

46/83

CodeBERT: Data example

47/83

CodeBERT: Masked Language Modeling

48/83

CodeBERT: Masked Language Modeling

mw
i ∼ unif {1, |w|} for i = 1 to |w|

mc
i ∼ unif {1, |c|} for i = 1 to |c|

wmasked = REPLACE (w,mw, [MASK])

cmasked = REPLACE (c,mc, [MASK])

x = w + c

LMLM(θ) =
∑

i∈mw∪mc

− log pD1(xi |wmasked , cmasked)

49/83

CodeBERT: Replaced Token Detection

50/83

CodeBERT: Replaced Token Detection

ŵi ∼ pGw (wi |wmasked)for i = 1 ∈ mw

ĉi ∼ pGc (ci |cmasked)for i = 1 ∈ mc

wcorrupt = REPLACE (w,mw, ŵ)

ccorrupt = REPLACE (c,mc, ĉ)

xcorrupt = wcorrupt + ccorrupt

51/83

CodeBERT: Replaced Token Detection

LRTD(θ) =

|w|+|c|∑
i=1

δ(i)logpD2(xcorrupt , i) +

(1− δ(i))
(
1− logpD2(xcorrupt , i)

)

δ(i) =

{
1, if xcorrupti = xi
0, otherwise

Lfinal = min
θ

LMLM(θ) + LRTD(θ)

52/83

CodeBERT: Results: Code retrieval

53/83

CodeBERT: Results: Documantation generation

54/83

CodeBERT: Results

55/83

Hoppity: learning graph
transformations to detect and
fix bugs in programs (2020)

Introduction

Problem
Detect and auto-fix defects in programs written in JavaScript.

Motivation:

• Size and complexity of source code ⇒ lots of vulnerabilities

• Existing tools are focused on specific vulnerabilities or projects

• Lack of end-to-end tools for JavaScript programming language

56/83

JavaScript specifics

• Dynamic typing

• Syntax and semantics, that lead to specific errors:
• Access to undefined properties
• Incorrect usage of comparison operators (!= vs !==)
• Issues with variable scope (var)

• Lack of good tooling for error detection

57/83

JavaScript specifics

58/83

Approach

Idea
Given an intenral graph representation of a program containing bug output a
sequence of graph transformations (graph-to-graph)

Difference from existing solutions:

• Single model for detection and fixing of bugs

• Support for multiple types of bugs

• Support for more complex transformations (e.g. addition/removal of
expressions)

59/83

Problem formulation

Task of structured prediction on a graph representation of a program.

Pairs (gbug, gfix), where gbug — program graph with bug; gfix — graph for fixed
program.

Model for predicting up to T transformations

p(gfix|gbug; θ) = p(g1|gbug; θ)p(g2|g1; θ) . . . p(gfix|gT−1; θ)

60/83

Program representation

• Program graph — enhanced AST

• SuccToken edges that connect leaf nodes

• Value-nodes with values for leaf nodesсо значениями для листовых
вершин

• ValueLink edges that connect leaf nodes with value nodes

Value-nodes and ValueLink are necessary for representing and performing
transforming independent from specific names.

61/83

Program representation: example

62/83

Vector representation of graphs

• AST g = (V ,E), where v ∈ V — a set of nodes, and E — a set of edges of
different types

• K — number of unique edge types in graph

• f (g) → (Rd ,R|V |×d), for d-dimensional representation of graph g⃗ and
nodes v⃗

• For parametrization f (·) — graph neural network, variation of Graph
Isomorphism Network (GIN)

63/83

Graph neural network

GIN variation

h(l+1),k
v = tanh(

∑
u∈N k (v)

Wl ,k
1 h(l)

u), ∀k ∈ 1, 2, . . . ,K

h(l+1)
v = tanh(Wl

2[h
(l+1),1
v ,h(l+1),2

v , . . . ,h(l+1),K
v] + h(l)

v)

• Wl ,k
1 ∈ Rd×d , Wl

2 ∈ RdK×d — model parameters

• N k(v) — a set of neighbours of node v with edge type k

• Embedding v⃗ = h(L)
v , where L — number of propagation iterations

• Embedding g⃗ — average of max pooling aggregations hl
v , ∀l ∈ 0, 1, . . . , L

64/83

Graph neural network

65/83

Graph transformations: operators

Each transformation step is one of 5 operators:

1. ADD — add AST node

2. DEL — delete AST node

3. REP_VAL — replace AST node value

4. REP_TYPE — replace AST node type

5. NO_OP — end of transformation sequence

Each operator is based on a common set of low-level primitives.

66/83

Graph transformations: primitives

Three low-level primitives:

1. Location primitive

2. Value primitive

3. Type primitive

Controller

Vector c⃗ ∈ Rd (d — number of embedding dimensions) encodes global state
and transformation history.

67/83

Location primitive

• Responsible for selecting node (source code region) for transformation

• Different programs have different number of nodes

• Uses special neural network models — pointer networks (Vinyals et al. 2015)

• After obtaining node embedding {v⃗}v∈V , select node using

loc(c⃗ , g) = arg max
(v∈V)

v⃗T c⃗

68/83

Value primitive

• Assigns concrete value to AST leaf node

• Uses attention mechanism, which allows to select:
• local values from current module (Local Value Table Vval)
• global values, which are more frequent in leaf nodes for the given language

(Global Value Dictionary Dval)

• Values are picked using:

val(c⃗ , g) = arg max
(t∈Dval∪Vval)

t⃗T c⃗

69/83

Type primitve

• Assigns type to non-terminal AST node

• A set of types for the given language is finite ⇒ multi-class classification
problem

• Set size is further reduced with the help of syntax rules for AST (grammar
rules validity)

70/83

Graph transformations: operators and primitives

71/83

Graph transformations: step t

Graph gt−1, embedding g⃗t−1 and macro-context vector C⃗Mt−1

1. Updaate macro-context: C⃗Mt = LSTM(g⃗t−1|C⃗Mt−1)

2. Select node v for transformation: loc(C⃗Mt , g⃗t−1)

3. Select operator et for the given vt and C⃗Mt (for NO_OP end of sequence)
• paper does not provide information on how, seems like softmax layer :)

4. Compute micro-context for operator: c⃗mt = LSTM(e⃗t |LSTM(v⃗t |C⃗Mt))

5. Apply operator et with micro-context c⃗mt (used to obtain val), obtain graph
gt

72/83

Training phase: dataset

• Dataset D = {(g (i)
bug, g

(i)
fix)}

|D|
i=1 с Github ∼ 500 thousands of pairs

• SHIFT AST and JSON diff for extracting AST transformation sequences

• Three separate setups for different number of transformations:
1. OneDiff — fixes with exactly 1 transformation
2. ZeroOneDiff — fixes with 0 or 1 transformations
3. ZeroOneTwoDiff — fixes with 0, 1 or 2 transformations

• Additional filtration of ASTs with number of nodes >500

73/83

Training phase

• Goal — expectation maximization for transformation:

max
θ

E[(gbug,gfix)∼D]p(gfix|gbug; θ)

• Loss function — sum of cross entropy losses for each transformation

• Adam with β1 = 0.9, β2 = 0.99, initial learning rate 10−3, batch size 10 and
3 epochs

• Embedding layers, operator layers and controller layer (LSTM) are jointly
opimized

74/83

Inference phase

• Select max: G = argmaxgfix p(gfix|gbug; θ)

• The search space is huge ⇒ use beam search

• The search space is limited by parameter B : the breadth of beam search;
used B = 1 and B = 3

• Output ranked list of Top-B probable transformations

75/83

Results

76/83

Results

77/83

Summary

We are not there yet

78/83

Actively researched areas and tasks

Widespread:

• Source code summarization (commit text generation, name suggestion)
• Defect, code smell and tecnhical debt detection
• Semantic code search (similar code; by natural language query)
• Edit/fix pattern discovery and suggestion
• Neural program synthesis, transformation and repair

More rare:

• Refactoring detection and suggestion
• Intelligent source code autocompletion
• Bug, developer and reiviewer triaging

79/83

Promising directions

1. More high-quality data

2. Better quality for downstream tasks

3. AI4SE infrastructure and integrations with common workflows

4. Explainable AI for Software Engineering

5. Trusted AI for Software Engineering
• Licence violoations
• Suggestions of buggy or exploitable code
• Vulnerabilities in pre-trained models

80/83

Useful materials

• Machine Learning on Source Code (https://ml4code.github.io/)

• Miltos Allamanis https://miltos.allamanis.com/

• Awesome Machine Learning On Source Code
(https://github.com/src-d/awesome-machine-learning-on-source-code)

• JetBrains Research Youtube AI4SE series
(https://www.youtube.com/playlist?list=PLJyTG7NfyQ8maHkU8dTJJWm81giLab380)

81/83

Companies, research groups and tools

Research and development:

• Microsoft (Deep Program Understanding Research Group, CoPilot)

• Facebook AI Research (Aroma, GetaFix, CompilerGym)

• Google Research (CuBERT, program synthesis)

• JetBrains (Machine Learning Methods in Software Engineering)

Production tools:

• Kite and TabNine for intelligent autocompletion

• DeepCode and Embold to find and fix vulnerabilities in code

• Sourcery and IBM’s Mono2Micro for AI-assisted refactoring

82/83

AI4SE team at ISP RAS

Source Code Analysis Assistant

• Mining fix-patterns from development history

• Learning source code embeddings for downstream tasks

• Detection of technical debt and refactoring suggestions

Mobile Application Testing Assistant

• Automated exploratory testing (Deep RL)

• UI element detection

• Visual anomaly detection (rendering issues, occlusions)

• Performance anomaly detection

83/83

	Source code analysis and comprehension
	A Convolutional Attention Network for Extreme Summarization of Code (2016)
	code2seq: Generating Sequences from Structured Representations of Code (2019)
	CodeBERT: A Pre-Trained Model for Programming and Natural Languages (2020)
	Hoppity: learning graph transformations to detect and fix bugs in programs (2020)
	Summary

