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Software complexity growth

• Software "is eating"the world

• Increased size and complexity

• Increased number of
vulnerabilities

• Shortage of talents

• Productivity gap
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Software vulnerabilities growth
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Productivity gap
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Traditional methods and tools

Quality assurance:
• Manual testing and hand-written tests (e.g. unit, integration)
• Manual code review
• Static analysis for source code and binaries (e.g. memory leak checkers)
• Dynamic analysis of software (e.g. fuzzing)

Productivity tools:
• Version control systems
• IDEs and LSP servers
• Continuous integration (CI) systems
• Container and cloud systems

6/83



Problems with traditional tools

• Precise but expensive

• Certain tools are based on hand-crafted rules

• Inefficient usage of large amounts of available data

• Inability to detect certain issues and routine tasks that can’t be automated

• Inefficient usage of system and human resources

Key takeaway
There is a need for complementary tools to reduce cognitive overload and to
optimize software engeneering activities.
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Software engineering activities
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AI and data-driven approaches for the rescue

Large amounts of valuable data from different sources:

• Source code is the data itself (e.g. 200 million repositories on Github)

• Development history (version control, code review)

• User interaction data, failures and monitoring data from production

• Issues from bug trackers and question-answering platforms (e.g. SO)

• Data from programming contests

We can apply ML and data driven approaches to optimize SE
activities and solve downstream tasks
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Scope of AI4SE
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Source code analysis and
comprehension



Actively researched areas and tasks

Widespread:

• Source code summarization (commit text generation, name suggestion)
• Defect, code smell and tecnhical debt detection
• Semantic code search (similar code; by natural language query)
• Edit/fix pattern discovery and suggestion
• Neural program synthesis, transformation and repair

More rare:

• Refactoring detection and suggestion
• Intelligent source code autocompletion
• Bug, developer and reiviewer triaging
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Companies, research groups and tools

Research and development:

• Microsoft (Deep Program Understanding Research Group, CoPilot)

• Facebook AI Research (Aroma, GetaFix, CompilerGym)

• Google Research (CuBERT, program synthesis)

• JetBrains (Machine Learning Methods in Software Engineering)

Production tools:

• Kite and TabNine for intelligent autocompletion

• DeepCode and Embold to find and fix vulnerabilities in code

• Sourcery and IBM’s Mono2Micro for AI-assisted refactoring
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Source code representations

• Source code and change metrics
• Source code token sequences
• Abstract Syntax Tree (AST)
• Edit sequences
• Lower-level intermediate representation (e.g. Control and Data Flow graphs,

LLVM IR)
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Source code and change metrics

• Derived after the code or edit is processed
• Can be computed on different abstraction levels (e.g. method)
• Sufficient for certain tasks (e.g. commit filtering or code smell detection)
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Abstract Syntax Tree (AST)
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Low-level intermediate represenations
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Obtaining raw representations

Language specific parsers
Good parsing quality, but often require building source code

• Clang/LLVM or GCC for C/C++

• Roslyn for C#

• ast module for Python

• javaparser for Java

Language agnostic parsers
Lightweight in exchange for parsing quality and loss of semantics

• srcML – lightweight multi-language parsing tool

• tree-sitter and ANTL parser generator tools
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A Convolutional Attention
Network for Extreme
Summarization of Code (2016)



Introduction

Problem
Extreme summarization of source code snippets into short, descriptive function
name-like summaries.

Motivation:

• Learning to summarize source code has important applications in software
engineering, such as in code understanding and in code search

• Lack of comprehensive evaluation of algorithms on real-world data
• Previous architectures used either hard-coded features or do not

extracttranslation-invariant features specifically
• Solution: introduce a special attentional neural network that employs

convolution on the input tokens in acontext-dependent way
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Source code summarization
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PL summarization specifics

Differences from NL summarization

• source code is mostly unambiguous and highly structured

• need to learn how the code instructions compose into a higher-level meaning

• necessity to learn patterns in code that use both structure and identifiers

Differences from translation

• input source code sequence large and the output summary small

• need to extract both temporally invariant and sentence-wide features

• source code presents the challenge of out-of-vocabulary words
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Convolutional Attention Model: Inputs

• Input sequence of subtokens c = [c<s>, c1, . . . , cN , c</s>]

• Output sequence of subtokens m = [m<s>,m1, . . . ,mM ,m</s>]

• < s > and < /s > – special sub-tokens for start and end

Example:

[< s >, try , {, return, render , requested , . . . ], [< s >, should , render , < /s >] 21/83



Convolutional Attention Model

• Model predicts each subtoken sequentially P(mt |m<s>, . . . ,mt−1, c)

• Subtokens m<s>, . . . ,mt−1 are passed into RNN that represents the input
state with a vector ht−1

• ht−1 and subtoken embeddings are used to compute matrix of attention
features Lfeat

• Lfeat is used to compute one or more normalized attention vectors

• vectors are used to predict probability distribution over targets mi
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Convolutional Attention Model

• E ∈ R|V |×D – D-dimensional subtoken embeddings
• Kl1 ∈ RD×w1×k1 and Kl2 ∈ Rk1×w2×k2 – convolution kernels
• ht−1 ∈ Rk2 – information from previous subtokens
• Lfeat ∈ R(len(c)+const)×k2 , k2 features for each location
• ht is computed using GRU
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Convolutional Attention Model
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Convolutional Attention Model

• n inRD – target embedding

• b ∈ R|V | – bias vector

• n ∈ R|V | – probability ditribution

• ToMap – returns a map of each subtoken vi ∈ V

• model is trained using max. likelihood
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Training setup

• 11 most popular Java open source projects

• extraction of methods with preprocessing
1. filtering out overrides, constructors and abstract methods using static analysis
2. substituion of tokens in recursive methods with self
3. split intop subtokens

• SGD with RMSProp, Nesterov momentum, dropout and gradient clipping

• optimized hyperparameters are k1 = k2 = 8,w1 = 24,w2 = 29,w3 = 10

dropout rate 50% and D = 128

• Measure Exact match and per-subtoken F1
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Evaluation: Projects
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Evaluation: Averaged
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Examples
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code2seq: Generating
Sequences from Structured
Representations of Code
(2019)



Idea

Problem
Generate source code description in natural language

Motivation:

• Existing solutions use seq2seq — source code is represented as token
sequence

• Problem: loss of structural information about program (syntax and
semantics)

• Suggested solution: use abstract syntax tree (AST) representation for
source code
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Useful properties of AST

• Finite number of nodes

• Unified source code
representation

• Allows to work with any
programming language
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Vector representation of source code
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Model

• Input – a set of paths between leaf nodes in AST x = (x1, ..., xk), where
xi = (vi1 , ..., vili ) is a node sequence

• Standard NMT architecture
• Encoder transforms a sequence of AST paths (x) into a sequence of vectors

of fixed size z = (z1, ..., zk)

• Decoder generates a sequence of output tokens one-by-one y = (y1, ..., ym)

• During decoding the probability of next token depends on the previously
decoded ones:

p(y1, ..., ym|x1, ..., xn) =
m∏
j=1

p(yj |y<j , z1, ..., zn)
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Encoding

Encoded AST path x is represented as follows:

h1, ...,hl = BiLSTM(Enodes
v1

, ...,Enodes
vl

)

encode_path(v1, ..., vl) = [h→l ;h←1 ],

where Enodes — embedding matrix (a set of AST nodes is finite)

Tokens of different case types (e.g. camelCase, snake_case, kebab-case) are
tokenized:

encode_token(t) =
∑

s∈split(t)

Esubtokens
s
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Encoding results

z = tanh(Win[encode_path(v1, ..., vl); encode_token(value(v1));

encode_token(value(vl))]),

where Win — matrix of size (2dpath + 2dtoken)× dhidden
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Network architecture

Initial decoder state: h0 =
1
k

∑k
i=1 zk

Attention layer is responsible for selecting only relevant paths
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Experiment A
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Experiment A: results
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Dependency on code size

39/83



Experiment B
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Experiment B: results

Dataset is a set of pairs (question, answer) from StackOverflow for C# language
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Selecting number of paths k

Results were collected with k = 200 (the number of paths for one AST ). This
value was picked empirically. Average number of paths in one AST is 220.

Values of k > 300 do not provide any improvements, except for rare large
examples. Values of k < 100 significantly reduce the model performance.
Moreover, it was shown that k = 200 is optimal for an average GPU.
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Neural net architecture selection
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CodeBERT: A Pre-Trained
Model for Programming and
Natural Languages (2020)



CodeBERT: Idea

Problem
Learn general-purpose code representations that support downstream NL-PL
applications.

Motivation:

• Existing solutions for NLP tasks use only natural language training data.
• Problem: there is no semantic connection between programming code and

its natural description for such problems as natural language code search,
code documentation generation

• Suggested solution: use multi-modal approach to connect natural language
and source code
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CodeBERT: Bimodal data

• Bimodal approach is using two different types of data to detect semantic
connection

• Multi-modal pre-trained model, like VideoBERT, ImageBERT
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CodeBERT: Pre-traininig data

• Dataset used is CodesearchNet challenge
• Train on bimodal data (natural language - programming language)
• Model was trained both on bimodal and unimodal (PL without documents)
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CodeBERT: Data example
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CodeBERT: Masked Language Modeling
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CodeBERT: Masked Language Modeling

mw
i ∼ unif {1, |w|} for i = 1 to |w|

mc
i ∼ unif {1, |c|} for i = 1 to |c|

wmasked = REPLACE (w,mw, [MASK ])

cmasked = REPLACE (c,mc, [MASK ])

x = w + c

LMLM(θ) =
∑

i∈mw∪mc

− log pD1(xi |wmasked , cmasked)
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CodeBERT: Replaced Token Detection
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CodeBERT: Replaced Token Detection

ŵi ∼ pGw (wi |wmasked)for i = 1 ∈ mw

ĉi ∼ pGc (ci |cmasked)for i = 1 ∈ mc

wcorrupt = REPLACE (w,mw, ŵ)

ccorrupt = REPLACE (c,mc, ĉ)

xcorrupt = wcorrupt + ccorrupt
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CodeBERT: Replaced Token Detection

LRTD(θ) =

|w|+|c|∑
i=1

δ(i)logpD2(xcorrupt , i) +

(1− δ(i))
(
1− logpD2(xcorrupt , i)

)

δ(i) =

{
1, if xcorrupti = xi
0, otherwise

Lfinal = min
θ

LMLM(θ) + LRTD(θ)
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CodeBERT: Results: Code retrieval
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CodeBERT: Results: Documantation generation
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CodeBERT: Results
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Hoppity: learning graph
transformations to detect and
fix bugs in programs (2020)



Introduction

Problem
Detect and auto-fix defects in programs written in JavaScript.

Motivation:

• Size and complexity of source code ⇒ lots of vulnerabilities

• Existing tools are focused on specific vulnerabilities or projects

• Lack of end-to-end tools for JavaScript programming language
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JavaScript specifics

• Dynamic typing

• Syntax and semantics, that lead to specific errors:
• Access to undefined properties
• Incorrect usage of comparison operators (!= vs !==)
• Issues with variable scope (var)

• Lack of good tooling for error detection
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JavaScript specifics
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Approach

Idea
Given an intenral graph representation of a program containing bug output a
sequence of graph transformations (graph-to-graph)

Difference from existing solutions:

• Single model for detection and fixing of bugs

• Support for multiple types of bugs

• Support for more complex transformations (e.g. addition/removal of
expressions)
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Problem formulation

Task of structured prediction on a graph representation of a program.

Pairs (gbug, gfix), where gbug — program graph with bug; gfix — graph for fixed
program.

Model for predicting up to T transformations

p(gfix|gbug; θ) = p(g1|gbug; θ)p(g2|g1; θ) . . . p(gfix|gT−1; θ)
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Program representation

• Program graph — enhanced AST

• SuccToken edges that connect leaf nodes

• Value-nodes with values for leaf nodesсо значениями для листовых
вершин

• ValueLink edges that connect leaf nodes with value nodes

Value-nodes and ValueLink are necessary for representing and performing
transforming independent from specific names.
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Program representation: example
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Vector representation of graphs

• AST g = (V ,E ), where v ∈ V — a set of nodes, and E — a set of edges of
different types

• K — number of unique edge types in graph

• f (g) → (Rd ,R|V |×d), for d-dimensional representation of graph g⃗ and
nodes v⃗

• For parametrization f (·) — graph neural network, variation of Graph
Isomorphism Network (GIN)
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Graph neural network

GIN variation

h(l+1),k
v = tanh(

∑
u∈N k (v)

Wl ,k
1 h(l)

u ), ∀k ∈ 1, 2, . . . ,K

h(l+1)
v = tanh(Wl

2[h
(l+1),1
v ,h(l+1),2

v , . . . ,h(l+1),K
v ] + h(l)

v )

• Wl ,k
1 ∈ Rd×d , Wl

2 ∈ RdK×d — model parameters

• N k(v) — a set of neighbours of node v with edge type k

• Embedding v⃗ = h(L)
v , where L — number of propagation iterations

• Embedding g⃗ — average of max pooling aggregations hl
v , ∀l ∈ 0, 1, . . . , L
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Graph neural network
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Graph transformations: operators

Each transformation step is one of 5 operators:

1. ADD — add AST node

2. DEL — delete AST node

3. REP_VAL — replace AST node value

4. REP_TYPE — replace AST node type

5. NO_OP — end of transformation sequence

Each operator is based on a common set of low-level primitives.
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Graph transformations: primitives

Three low-level primitives:

1. Location primitive

2. Value primitive

3. Type primitive

Controller

Vector c⃗ ∈ Rd (d — number of embedding dimensions) encodes global state
and transformation history.
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Location primitive

• Responsible for selecting node (source code region) for transformation

• Different programs have different number of nodes

• Uses special neural network models — pointer networks (Vinyals et al. 2015)

• After obtaining node embedding {v⃗}v∈V , select node using

loc(c⃗ , g) = arg max
(v∈V )

v⃗T c⃗

68/83



Value primitive

• Assigns concrete value to AST leaf node

• Uses attention mechanism, which allows to select:
• local values from current module (Local Value Table Vval)
• global values, which are more frequent in leaf nodes for the given language

(Global Value Dictionary Dval)

• Values are picked using:

val(c⃗ , g) = arg max
(t∈Dval∪Vval)

t⃗T c⃗
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Type primitve

• Assigns type to non-terminal AST node

• A set of types for the given language is finite ⇒ multi-class classification
problem

• Set size is further reduced with the help of syntax rules for AST (grammar
rules validity)
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Graph transformations: operators and primitives
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Graph transformations: step t

Graph gt−1, embedding g⃗t−1 and macro-context vector C⃗Mt−1

1. Updaate macro-context: C⃗Mt = LSTM(g⃗t−1|C⃗Mt−1)

2. Select node v for transformation: loc(C⃗Mt , g⃗t−1)

3. Select operator et for the given vt and C⃗Mt (for NO_OP end of sequence)
• paper does not provide information on how, seems like softmax layer :)

4. Compute micro-context for operator: c⃗mt = LSTM(e⃗t |LSTM(v⃗t |C⃗Mt ))

5. Apply operator et with micro-context c⃗mt (used to obtain val), obtain graph
gt
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Training phase: dataset

• Dataset D = {(g (i)
bug, g

(i)
fix )}

|D|
i=1 с Github ∼ 500 thousands of pairs

• SHIFT AST and JSON diff for extracting AST transformation sequences

• Three separate setups for different number of transformations:
1. OneDiff — fixes with exactly 1 transformation
2. ZeroOneDiff — fixes with 0 or 1 transformations
3. ZeroOneTwoDiff — fixes with 0, 1 or 2 transformations

• Additional filtration of ASTs with number of nodes >500
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Training phase

• Goal — expectation maximization for transformation:

max
θ

E[(gbug,gfix)∼D]p(gfix|gbug; θ)

• Loss function — sum of cross entropy losses for each transformation

• Adam with β1 = 0.9, β2 = 0.99, initial learning rate 10−3, batch size 10 and
3 epochs

• Embedding layers, operator layers and controller layer (LSTM) are jointly
opimized
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Inference phase

• Select max: G = argmaxgfix p(gfix|gbug; θ)

• The search space is huge ⇒ use beam search

• The search space is limited by parameter B : the breadth of beam search;
used B = 1 and B = 3

• Output ranked list of Top-B probable transformations
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Results
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Results
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Summary



We are not there yet
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Actively researched areas and tasks

Widespread:

• Source code summarization (commit text generation, name suggestion)
• Defect, code smell and tecnhical debt detection
• Semantic code search (similar code; by natural language query)
• Edit/fix pattern discovery and suggestion
• Neural program synthesis, transformation and repair

More rare:

• Refactoring detection and suggestion
• Intelligent source code autocompletion
• Bug, developer and reiviewer triaging

79/83



Promising directions

1. More high-quality data

2. Better quality for downstream tasks

3. AI4SE infrastructure and integrations with common workflows

4. Explainable AI for Software Engineering

5. Trusted AI for Software Engineering
• Licence violoations
• Suggestions of buggy or exploitable code
• Vulnerabilities in pre-trained models
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Useful materials

• Machine Learning on Source Code (https://ml4code.github.io/)

• Miltos Allamanis https://miltos.allamanis.com/

• Awesome Machine Learning On Source Code
(https://github.com/src-d/awesome-machine-learning-on-source-code)

• JetBrains Research Youtube AI4SE series
(https://www.youtube.com/playlist?list=PLJyTG7NfyQ8maHkU8dTJJWm81giLab380)
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Companies, research groups and tools

Research and development:

• Microsoft (Deep Program Understanding Research Group, CoPilot)

• Facebook AI Research (Aroma, GetaFix, CompilerGym)

• Google Research (CuBERT, program synthesis)

• JetBrains (Machine Learning Methods in Software Engineering)

Production tools:

• Kite and TabNine for intelligent autocompletion

• DeepCode and Embold to find and fix vulnerabilities in code

• Sourcery and IBM’s Mono2Micro for AI-assisted refactoring
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AI4SE team at ISP RAS

Source Code Analysis Assistant

• Mining fix-patterns from development history

• Learning source code embeddings for downstream tasks

• Detection of technical debt and refactoring suggestions

Mobile Application Testing Assistant

• Automated exploratory testing (Deep RL)

• UI element detection

• Visual anomaly detection (rendering issues, occlusions)

• Performance anomaly detection
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