
Attacks on deep learning and explainable AI

Konstantin Arkhipenko [arkhipenko<аt>ispras<dоt>ru, t.me/arxikv]
November 10, 2021

Ivannikov Institute for System Programming of the RAS (ISP RAS)



Motivation

• Deep learning is SOTA in many tasks (computer vision, NLP, ...)
• However, poor robustness and interpretability of DNNs limits their
applications in safety-critical environments

2/38



Contents

1. Evasion attacks
• White-box vs black-box
• Transferability of evasion attacks

2. Poisoning attacks
3. Explainable AI

• Explanation types
• Evaluating explanations
• Post-hoc black-box explanations
• Image saliency

4. XAI meets adversarial attacks
• Interpretability-aware robust training
• Detection of adversarial examples using attributions
• Defense of Trojaned models

3/38



Taxonomy of adversarial attacks (Tabassi et al. 2019)

Techniques

• Training: data poisoning (to allow future intrusion)
• Testing (inference): evasion (adversarial examples), model extraction and
inversion

Knowledge

• White-box: complete information about the model, including model
architecture, parameters, loss function and data

• Black-box: samples and oracle only
• Gray-box: partial information (many different settings examined in the
papers; typically the parameters are unknown)

4/38



A simple white-box attack: FGSM (Goodfellow et al. 2015)

• Note: J(θ, x, y) is the loss function value where θ are the learned parameters,
and y is the ground truth label corresponding to input image x

5/38



White-box evasion attacks: Projected gradient descent (PGD)

• PGD is used in many SOTA white-box attacks
• Find adversarial example x′ for an input x within
the `p-ball B of radius ε: ‖x − x′‖p ≤ ε

• Repeatedly set (x0 := x):

xi+1 = ProjB(xi+αg) g = argmax
‖v‖p≤1

vT [∇xL(x, y)
∣∣
x=xi

]

• Targeted attack: replace L(x, y) with −L(x, y′)
where y′ is the target label

• Loss L is typically cross-entropy, however, other
objectives can be used in much stronger
adaptive attacks

`2 `∞

6/38



Defense techniques: adversarial training (Madry et al. 2017)

• Idea: train on adversarial examples

Ex,y[max
δ∈S

L(θ; x + δ, y)] → min
θ

• Most widely used defense method (typically increases accuracy on
adversarial examples from ∼0% to 30-70%)

• Very diverse defense methods have been proposed to further increase the
accuracy

• However, none of these defenses have been shown to be robust to adaptive
attacks targeting these defenses (several such claims were unvalidated by
Tramer et al. 2020)

7/38



Black-box evasion attacks

• Numerical gradient estimation
• Too many oracle queries (O(d) where d is input dimensionality)
• Not possible if class probabilities are not available (methods for this case use
even more oracle queries)

• Substitute model (Papernot et al. 2016, untargeted attack):

8/38



Transferability of adversarial attacks

• Liu et al. 2016 showed that targeted attacks are more
diffucult to transfer, but this can be done using
ensembles of models

• The resulting adversarial examples are more likely to
transfer to other models

• Meanwhile, Moosavi-Dezfooli et al. 2016 showed
existence of universal perturbations which can
transfer across different datasets and models

• As shown by Ilyas et al. 2019 (“Adversarial examples
are not bugs, they are features”), these phenomena
may be related to hidden patterns in datasets

9/38



Poisoning attacks

• Add examples to the training set to manipulate the behavior
of the model at test time

• Different settings possible depending on whether the
adversary can control the labeling process:

• The adversary has full control over the training process, the
victim is provided with the final model parameters (Trojaned
model)

• The adversary can alter the data samples but cannot control
the labeling process

• In the second setting, imperceptible perturbations are
reasonable, while in the former can alter data samples in
any way

10/38



Imperceptible data poisoning (Shafahi et al. 2018)

p = argmin
x

‖f (x)− f (t)‖22 + β‖x − b‖22

11/38



Contents

1. Evasion attacks
• White-box, black-box
• Transferability of evasion attacks

2. Poisoning attacks
3. Explainable AI

• Evaluating explanations
• Post-hoc explanation types
• Post-hoc black-box explanations
• Image saliency

4. XAI meets adversarial attacks
• Interpretability-aware robust training
• Detecting adversarial examples using attributions

12/38



Why we need explanations

• Arrieta et al. 2020 “Explainable Artificial Intelligence (XAI): Concepts,
taxonomies, opportunities and challenges toward responsible AI”

13/38



Evaluating explanations: human-centered

Human-centered

• Information transfer rate and trust coefficient (Schmidt & Biessmann 2019)
• Idea: the better an explanation is, the faster and more accurately an user will
reproduce the decisions of the model

• Compute ITR before and after showing explanations to the user to assess trust
• Target audience: end users, executives, domain experts

Metric-centered

• Fidelity: removing the relevant features (according to an explanation) should
significantly affect prediction score/accuracy

14/38



Post-hoc explainability

• Interpretable models (e.g. linear regression, decision trees) are often not
sufficient for complex tasks

• Post-hoc explainability: try to enhance interpretability of complex or
black-box models (such as DNNs) by various means:

• Feature relevance explanation
• Explanations by example: activation maximization, prototypes, counterfactuals
• Text explanations: generate texts that help explaining the results from the
model

• Visual explanation: e.g. dimensionality reduction
• Explanation by simplificiation: techniques in which a whole new system is
rebuilt based on the trained model to be explained

• Local explanations: segment the solution space and give explanations to less
complex solution subspaces

15/38



Explanations by example: activation maximization/prototypes

• Synthesizing the preferred inputs for neurons via deep generator networks,
Nguyen et al. 2016

• Use image generator network (deconv) to activate the output neurons

16/38



Feature relevance explanations

White/black-box

• White-box: need gradient access or even specific propagation rules for all
layer (operation) types

• Black-box: only input data and predictions are used

Data type

• Tabular data: meaningful real-valued/ordinal/binary/categorical features
• Images: saliency maps
• NLP: token/n-gram highlighting, visualizing attention weights

17/38



Simple explanations for tabular data

Partial dependence plot / Individual conditional expectation

• Fix all features except one
• ICE: average of PDPs for all data samples 18/38



Explanation by simplification: surrogates

• Global surrogate (knowledge distillation): train a
new interpretable model which replicates the one
being explained

• Local surrogate (LIME, Ribeiro et al. 2016):
• Create a dataset where each sample is a perturbed
version of the original sample being explained

• Ask the (black-box) oracle for predictions and use
them as ground-truth for a new interpretable model

• Need some way to perturb samples and maximum
allowed perturbation level

19/38



LIME for natural language processing

• Perturbation method: remove one of the input tokens (alternatively, replace
with some mask token)

• Substitute model: linear regression (regression) or logistic regression
(classification)

• Use substitute model weights to obtain input token importances
• Language Interpretability Tool (PAIR-code, Tenney et al. 2020):

20/38



Post-hoc explanations for images: saliency

Pixel/patch sensitivity maps

• Occlusion sensitivity
• Apply gray patches on the input image iteratively and see the model confidence

• Vanilla gradient, gradient × input
• Integrated gradients
• SmoothGrad

CAM (class activation map) based methods

• Grad-CAM, Grad-CAM++, ScoreCAM, ...

Implementations: tf-explain, PAIR-code/saliency, tf-keras-vis, Captum (pytorch)
Out of scope: LRP, DeepLIFT, DeepSHAP

21/38



Image saliency: Integrated gradients (Sundararajan et al. 2017)

• Given an input image x and baseline image x′:

[IG(x)]i , (xi − x′i) ·
∫ 1

α=0

∂fc(x′ + α(x − x′))
∂xi

dα

• The baseline is typically zero (black) image
• Riemann sum approximation (m is the number of steps):

[IGapprox(x)]i = (xi − x′i) ·
m∑
k=1

∂fc(x′ + k
m(x − x′))
∂xi

· 1
m

Why not vanilla gradient?

• Model saturation (perturbing a single pixel) may have no effect on prediction
• IG have a number of desirable properties not present in Vanilla gradient

22/38



Integrated gradients: sensitivity and completeness

Sensitivity(a), violated by Gradient

• For every input and baseline that differ in one feature but have different
predictions then the differing feature should be given a non-zero attribution

Sensitivity(b)

• If the function implemented by the deep network does not depend
(mathematically) on some variable, then the attribution to that variable is
always zero

Completeness (implies Sensitivity(a), violated by Gradient)

• The attributions add up to the difference between the output at the input x
and the baseline x′

23/38



Image saliency: SmoothGrad (Smilkov et al. 2017)

• Motivation: the gradient may fluctuate sharply at small scales:

Method

• Apply Vanilla gradient to N noisy images obtained from the original image by
adding Gaussian noise N (0, σ2)

• Can be combined with Grad × input, Guided BP or CAM-based methods (e.g.
Smooth Grad-CAM++ by Omeiza et al. 2019) 24/38



SmoothGrad vs Guided BP vs Integrated gradients

• Simple gradient saliency such as (the norm of) Vanilla gradient, Gradient ×
input can be used for NLP tasks 25/38



Image saliency: class activation maps (Zhou et al. 2015)

• Initially proposed as a localization method for ILSVRC 2014 dataset
26/38



Class activation maps

Assumption

• The last convolutional layer uses global average pooling and is immediately
followed by softmax layer

• Such models can be suboptimal on some datasets and are restricted to image
classification

Definition

• Global average pooling (A is the last conv layer activations for a single input
image in channels-last format):

[GAP(A)]k =
1

hawa

∑
i,j

Aijk

• The score (logit) fc for class c:

fc(x) =
∑
k

wck · [GAP(A)]k
27/38



Class activation maps

Definition

• Class activation map CAM(x, c) for input image x and class c:

[CAM(x, c)]ij ,
∑
k

wckAijk

• Use bilinear interpolation to match the input image size

Completeness property

• The activation map sums up to the score fc thanks to the usage of global
average pooling:

1
hawa

∑
i,j

[CAM(x, c)]ij = fc(x)

28/38



Image saliency: Grad-CAM (Selvaraju et al. 2016)

• Does not rely on CAM assumption
• Also equivalent to CAM if the assumption holds

• Can be applied to any layer of the network
29/38



Grad-CAM: formula for the weights

• Use gradients of the score fc(x) with respect to activations of some
convolutional layer (typically the last one but this is not required):

wck =
1

hawa

∑
i,j

∂fc(x)
∂Aijk

• The paper reports SOTA results on ILSVRC-15 weakly-supervised localization
• An example of weakly-supervised segmentation is provided as well:

30/38



Guided Grad-CAM

• Guided backpropagation (Springenberg et al. 2014):

31/38



Guided Grad-CAM

• Combine Grad-CAM with guided BP:

32/38



CAM meets adversarial examples: interpretation discrepancy

Boopathy et al. 2020

• Interpretation discrepancy between benign image x and adversarial image x′:

D(x, x′) = 1
C
∑
c∈C

‖CAM(x, c)− CAM(x′, c)‖p
33/38



Interpretability-aware robust training (Boopathy et al. 2020)

• Proposition (by the paper): is not difficult to prevent adversarial examples
from having large interpretation discrepancy with respect to a single class
label, but not both original y and target y′

• `1 2-class interpretation discrepancy:

D2,`1(x, x′) =
1
2
(‖CAM(x, y)− CAM(x′, y)‖1 + ‖CAM(x, y′)− CAM(x′, y′)‖1)

• Adversarial training:

Ex,y[ftrain(θ; x, y) + γ · max
‖δ‖∞≤ε

D2,`1(x, x + δ)] → min
θ

34/38



Interpretability-aware robust training: results

Notes:
• 200-step PGD accuracy under different
perturbation sizes ε

• Adv is vanilla adversarial training
• Int and Int2 are interpretability-aware
training with 1-class and 2-class ID,
respectively

35/38



ML-LOO: detecting adversarial examples (Yang et al. 2019)

• Goal: detect adversarial examples using multi-layer leave-one-out
attributions

• Leave-one-out (LOO) attributions:

φ(x)i , f (x)c − f (x(i))c c = argmax
j∈C

f (x)j

• f (x) is the probability vector for input x, x(i) is obtained by masking i-th pixel in
x, C is the set of class labels

• Measure interquartile range (IQR) for the attribution map:

IQR(φ(x)) , Qφ(x)(0.75)− Qφ(x)(0.25)

• Multi-layer: compute LOO attributions for hidden layer activations as well
• Feed multiple IQR values into logistic regression detector

36/38



Summary

• XAI and adversarial attacks is a rather new field receiving attention in the last
5 years

• There are apparent connections between XAI and adversarial robustness as
claimed by a number of papers

37/38



Thank you


