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Motivation RAS

- Deep learning is SOTA in many tasks (computer vision, NLP, ...)

- However, poor robustness and interpretability of DNNs limits their
applications in safety-critical environments
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Taxonomy of adversarial attacks (Tabassi et al. 2019) RAS

Techniques

- Training: data poisoning (to allow future intrusion)

- Testing (inference): evasion (adversarial examples), model extraction and
inversion

Knowledge

- White-box: complete information about the model, including model
architecture, parameters, loss function and data

- Black-box: samples and oracle only

- Gray-box: partial information (many different settings examined in the
papers; typically the parameters are unknown)
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A simple white-box attack: FGSM (Goodfellow et al. 201 RAS

+.007 x
; x +
T mgn(VwJ(O, T, y)) Gsign(vmj(g’ z, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

- Note: J(0,x,y) is the loss function value where @ are the learned parameters,
and y is the ground truth label corresponding to input image x
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White-box evasion attacks: Projected gradient descent (PGD) RAS

- PGD is used in many SOTA white-box attacks

- Find adversarial example x’ for an input x within
the ¢p-ball B of radius e: [|x —X'||, < e

- Repeatedly set (xq := x):

Xiy1 = Projg(xi+ag) g = aﬁg”mgx VIIVRL () |y ] |
Vv P \“

- Targeted attack: replace L(x,y) with —L(x,y")
where y' is the target label

- Loss L is typically cross-entropy, however, other
objectives can be used in much stronger

adaptive attacks
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Defense techniques: adversarial training (Madry et al. 2017) RAS

- ldea: train on adversarial examples
EX’V[?Sé( L(@;x+6,y)] — min

- Most widely used defense method (typically increases accuracy on
adversarial examples from ~0% to 30-70%)

- Very diverse defense methods have been proposed to further increase the
accuracy

- However, none of these defenses have been shown to be robust to adaptive
attacks targeting these defenses (several such claims were unvalidated by
Tramer et al. 2020)
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Black-box evasion attacks RAS

- Numerical gradient estimation
- Too many oracle queries (O(d) where d is input dimensionality)
- Not possible if class probabilities are not available (methods for this case use
even more oracle queries)
- Substitute model (Papernot et al. 2016, untargeted attack):

Algorithm 1 - Substitute DNN Training: for oracle O,
a maximum number maz, of substitute training epochs, a
substitute architecture F', and an initial training set So.

Input: O, maz,, So, A
1: Define architecture F'
2: for p€ 0 .. maz, — 1 do
3: // Label the substitute training set
D« {(f,O(f)) Fe sp}
// Train F' on D to evaluate parameters O
0p < train(F, D)
// Perform Jacobian-based dataset augmentation
Sp+1 —{Z+ X-sgn(Jr[O(F)]) : € S,}US,
9: end for
10: return O

P NPT R
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Transferability of adversarial attacks RAS

- Liu et al. 2016 showed that targeted attacks are more
diffucult to transfer, but this can be done using
ensembles of models

- The resulting adversarial examples are more likely to
transfer to other models

- Meanwhile, Moosavi-Dezfooli et al. 2016 showed
existence of universal perturbations which can
transfer across different datasets and models

- As shown by Ilyas et al. 2019 (“Adversarial examples

are not bugs, they are features”), these phenomena
may be related to hidden patterns in datasets
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Poisoning attacks RAS

- Add examples to the training set to manipulate the behavior
of the model at test time

- Different settings possible depending on whether the
adversary can control the labeling process:

- The adversary has full control over the training process, the
victim is provided with the final model parameters (Trojaned
model)

- The adversary can alter the data samples but cannot control
the labeling process

- In the second setting, imperceptible perturbations are
reasonable, while in the former can alter data samples in
any way
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Imperceptible data poisoning (Shafahi et al. 2018) RAS

p = arg min||f(X) —F®)5 + Blx — bl3

Algorithm 1 Poisoning Example Generation

Target instances from Fish class

Input: target instance ¢, base instance b, learning rate A
Initialize x: @ < b

Define: L, () = || f(x) - £(t)

oot for i = 1 to maxiters do

fshcoss Forward step: &; = 2, — AV, Ly(zi_1)

bue Backward step: z;; = (Z; + ABb) /(1 + BA)
— end for

Poisons
made for
dog class
from fish
bases

11/38



Contents RAS
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Why we need explanations

RAS

- Arrieta et al. 2020 “Explainable Artificial Intelligence (XAl): Concepts,
taxonomies, opportunities and challenges toward responsible Al”

‘Who? Domain experts/users of the model (e.g. medical doctors, insurance agents) | 7
‘Why? Trust the model itself, gain scientific knowledge @
Qs

‘Who? Users affected by model decisions
‘Why? Understand their situation, verify | ?
fair decisions... Y

‘Who? Regulatory entities/agencies
‘Why? Certify model compliance with the|?
legislation in force, audits, ...

Target audience
in XAI

‘Who? Data scientists, developers, product owners...
Why? Ensure/improve product efficiency, research, |7
new functionalities... 9

‘Who? Managers and executive board members
‘Why? Assess regulatory compliance, understand
corporate Al applications...
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Evaluating explanations: human-centered RAS

Human-centered

- Information transfer rate and trust coefficient (Schmidt & Biessmann 2019)

- ldea: the better an explanation is, the faster and more accurately an user will
reproduce the decisions of the model

- Compute ITR before and after showing explanations to the user to assess trust

- Target audience: end users, executives, domain experts

Metric-centered

- Fidelity: removing the relevant features (according to an explanation) should
significantly affect prediction score/accuracy
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Post-hoc explainability 1§10 RAS

- Interpretable models (e.g. linear regression, decision trees) are often not

sufficient for complex tasks
- Post-hoc explainability: try to enhance interpretability of complex or
black-box models (such as DNNs) by various means:
- Feature relevance explanation
- Explanations by example: activation maximization, prototypes, counterfactuals
- Text explanations: generate texts that help explaining the results from the
model
- Visual explanation: e.g. dimensionality reduction
- Explanation by simplificiation: techniques in which a whole new system is
rebuilt based on the trained model to be explained
- Local explanations: segment the solution space and give explanations to less
complex solution subspaces
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Explanations by example: activation maximization/prototypes ISP

- Synthesizing the preferred inputs for neurons via deep generator networks,

Nguyen et al. 2016

- Use image generator network (deconv) to activate the output neurons

Code
: Forward and backward passes
: brambling B ;‘Ieal beetle
\ =—— candle r
________ = banana
AN .
u9 : ]
== convertible
cheeseburger swimming trunks barn
fc6 upconvolutional convolutional fc8
L

fc6 fc7

T
Deep generator network T
(prior) DNN being visualized

runnmg shoe water jug pool table

RAS
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Feature relevance explanations RAS

White/black-box

- White-box: need gradient access or even specific propagation rules for all
layer (operation) types

- Black-box: only input data and predictions are used
Data type

- Tabular data: meaningful real-valued/ordinal/binary/categorical features
- Images: saliency maps
- NLP: token/n-gram highlighting, visualizing attention weights
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Simple explanations for tabular data RAS

Partial dependence plot / Individual conditional expectation

03

°

Cancer probability difference to age 13

- Fix all features except one

- ICE: average of PDPs for all data samples 18/38



Explanation by simplification: surrogates RAS

- Global surrogate (knowledge distillation): train a
new interpretable model which replicates the one
being explained

Machine Learning Model
Thisis a

- Local surrogate (LIME, Ribeiro et al. 2016): iabrador

- Create a dataset where each sample is a perturbed
version of the original sample being explained

- Ask the (black-box) oracle for predictions and use
them as ground-truth for a new interpretable model

- Need some way to perturb samples and maximum
allowed perturbation level

Why?!
—
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LIME for natural language processing £ 0 RAS

- Perturbation method: remove one of the input tokens (alternatively, replace
with some mask token)

- Substitute model: linear regression (regression) or logistic regression
(classification)

- Use substitute model weights to obtain input token importances

- Language Interpretability Tool (PAIR-code, Tenney et al. 2020):

grad_norm  passage_grad

e o [ D D

era sgangster movie .

lime passage

autorun ;. . the depression-era

gangster movie

20/38



Post-hoc explanations for images: saliency RAS

Pixel/patch sensitivity maps

- Occlusion sensitivity
- Apply gray patches on the input image iteratively and see the model confidence
- Vanilla gradient, gradient x input
- Integrated gradients
- SmoothGrad

CAM (class activation map) based methods
- Grad-CAM, Grad-CAM++, ScoreCAM, ...

Implementations: tf-explain, PAIR-code/saliency, tf-keras-vis, Captum (pytorch)
Out of scope: LRP, DeepLIFT, DeepSHAP
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Image saliency: Integrated gradients (Sundararajan et al. 2017) 1§10 RAS

- Given an input image x and baseline image x”:

1 "4 alx — X'
160 2 (g —x) [ DL AX=XD)

da
a=0 aXi

- The baseline is typically zero (black) image
- Riemann sum approximation (m is the number of steps):

[lGapprox( )]/ - '_X) Z afc (X X)) l

8x, m

Why not vanilla gradient?

- Model saturation (perturbing a single pixel) may have no effect on prediction
- 1G have a number of desirable properties not present in Vanilla gradient
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Integrated gradients: sensitivity and completeness RAS

Sensitivity(a), violated by Gradient

- For every input and baseline that differ in one feature but have different
predictions then the differing feature should be given a non-zero attribution

Sensitivity(b)

- If the function implemented by the deep network does not depend
(mathematically) on some variable, then the attribution to that variable is
always zero

Completeness (implies Sensitivity(a), violated by Gradient)

- The attributions add up to the difference between the output at the input x
and the baseline x’
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Image saliency: SmoothGrad (Smilkov et al. 2017) RAS

- Motivation: the gradient may fluctuate sharply at small scales:

010

9S. /0x;(z + te)

-0
00 02 04 06 08 10
t

Method

- Apply Vanilla gradient to N noisy images obtained from the original image by
adding Gaussian noise N (0, 0?)
- Can be combined with Grad x input, Guided BP or CAM-based methods (e.g.

Smooth Grad-CAM++ by Omeiza et al. 2019) 24/38



SmoothGrad vs Guided BP vs Integrated gradients £l RAS

Gradient Gradient x Image

Vanilla Integrated Guided BackProp | SmoothGrad Vanilla Integrated Guided BackProp  |SmoothGrad

drilling platform
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=)

hognose snake

- Simple gradient saliency such as (the norm of) Vanilla gradient, Gradient x
input can be used for NLP tasks




Image saliency: class activation maps (Zhou et al. 2015) 1§10 RAS

<Z00

<Z00

<z00
z0

Class Activation Mapplng

Class
+ Wy« + e+ W s = Activation
Map
(Australian terrier)
‘B .

- Initially proposed as a localization method for ILSVRC 2014 dataset
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Class activation maps 1§10 RAS

Assumption

- The last convolutional layer uses global average pooling and is immediately
followed by softmax layer

- Such models can be suboptimal on some datasets and are restricted to image
classification

Definition

Global average pooling (A is the last conv layer activations for a single input
image in channels-last format):

[GAP A)]I? - ZAW?

- The score (logit) fc for class c:

=" wi - [GAP(A)], 77136



Class activation maps RAS

Definition

- Class activation map CAM(x, ¢) for input image x and class c:
[CAM(X, O)j 2~ wiAyp
k
- Use bilinear interpolation to match the input image size

Completeness property

- The activation map sums up to the score f. thanks to the usage of global

average pooling:
1

haWq

Z[CAM(Xa Oy = fe(x)

s,
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Image saliency: Grad-CAM (Selvaraju et al. 2016)

(c) Grad-CAM ‘Cat’

(b) Guided Backprop ‘Cat’ (

(a) Original Image

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog’  (j)Guided Grad-CAM ‘Dog’ (k) Occlusion map ‘Dog’ (I)ResNet Grad-CAM ‘Dog’

- Does not rely on CAM assumption
- Also equivalent to CAM if the assumption holds

- Can be applied to any layer of the network

RAS
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Grad-CAM: formula for the weights RAS

- Use gradients of the score f¢(x) with respect to activations of some
convolutional layer (typically the last one but this is not required):
1 fc(x)

hawg T aAij}?

)

C _
W,?—

- The paper reports SOTA results on ILSVRC-15 weakly-supervised localization
- An example of weakly-supervised segmentation is provided as well:

Ground-Truth Input SEC with Grad-CAM
ST
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Guided Grad-CAM RAS

- Guided backpropagation (Springenberg et al. 2014):

a) Forward pass 1o )] 1]als 1lo0]|s

H 0 1 L-1] L
Input image f -] > ST1511 : Forward pass ST=E1 — GTals
Feature map | 3(12]4 0214

Backward pass

Reconstructed - L N 2]0f1 2|31

image R’ ( n & o2 R ! - : - .
6 -

Backward pass:
I backpropagation

———————————————————— | of-1]3 2|-1]3
) activation: Y = relu(f!) = max(f},0) : 13T T
. ) Hfout Backward pass:
backpropagation: R! = (f! > 0)- R, where RI*! = fm ! “deconvnet” 6|lofj1| «— |6|-3|1
ofit 2|03 2|-1]3
backward R — . RlAH! I
‘deconvnet": i i I
| Backward pass: 0 |8 0 -2 JEN -1
guided Rl — (f' >0)- R+ | guided 6|lojo| «<— |6|-3]1
backpropagation: "~ ' K backpropagation olols 2113
|
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Guided Grad-CAM 53-8 RAS

- Combine Grad-CAM with guided BP:

backpropagation ’deconvnet’ guided backpropagation
Original Image  Guided Grad-CAM Grad-CAM Original Image  Guided Grad-CAM Grad-CAM
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CAM meets adversarial examples: interpretation discrepancy RAS

Boopathy et al. 2020

Input image

\

Adversarial example X' Original example x

correlation: 0.4782  correlation: 0.5039 | correlation: 0.5018 correlation: 0.5472 | correlation: 0.4040 correlation: 0.3911

- Interpretation discrepancy between benign image x and adversarial image x’:

1
D(x,x') = = CAM(x, c) — CAM(X', ¢
(X, x') C;ll (x,0) (Ol e



Interpretability-aware robust training (Boopathy et al. 2020) RAS

- Proposition (by the paper): is not difficult to prevent adversarial examples
from having large interpretation discrepancy with respect to a single class
label, but not both original y and target y’

- {1 2-class interpretation discrepancy:
1
Dot (%,X) = S ([ICAM(x, y) — CAM(X', y) [+ + [[CAM(x, ') — CAM(X', y") 1)
- Adversarial training:

EXJ[ftrain(e;Xay) +- H5r|7|13X< Dy, (X, x+46)] — m(;n
o <e€
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Interpretability-aware robust training: results

Notes:

- 200-step PGD accuracy under different
perturbation sizes e

- Adv is vanilla adversarial training

- Int and Int2 are interpretability-aware
training with 1-class and 2-class ID,
respectively

RAS

Method e=0 005 0.1 0.2 0.3 0.35 0.4
MNIST, Small
Normal 1.000 0.530 0.045 0.000 0.000 0.000 0.000
Adv 0.980 0.960 0.940 0.925 0.890 0.010 0.000
TRADES 0.970 0.970 0.955 0.930 0.885 0.000 0.000
IG-Norm 0.985 0.950 0.895 0410 0.005 0.000 0.000
IG-Norm-Sum  0.975 0.955 0.935 0910 0.880 0.115 0.000
Int-one-class 0975 0.635 0330 0.140 0.125 0.115 0.080
Int 0.950 0.930 0.905 0.840 0.790 0.180 0.140
Int-Adv 0.935 0.945 0905 0.880 0.855 0.355 0.175
Int2 0.950 0.945 00935 0.890 0.845 0.555 0.385
Int2-Adv 0.955 0.925 0915 0.880 0.840 0.655 0.620
e=0 2/255 4/255 6/255 8/255 9/255 10/255
CIFAR-10, WResnet
Normal 0.765 0.250 0.070 0.060 0.060 0.060  0.060
Adv 0.720 0.605 0.485 0.330 0.170 0.145 0.085
TRADES 0.765 0.610 0.460 0.295 0.170 0.140  0.100
Int-one-class 0.685 0.505 0360 0.190 0.065 0.040 0.025
Int 0.735 0.630 0.485 0.365 0.270 0.240 0.210
Int-Adv 0.665 0.585 0510 0.385 0.320 0.300 0.280
Int2 0.690 0.595 0465 0360 0290 0245 0.220
Int2-Adv 0.680 0.585 0.485 0405 0.335 0310 0.285
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ML-LOO: detecting adversarial examples (Yang et al. 2019) RAS

- Goal: detect adversarial examples using multi-layer leave-one-out
attributions
- Leave-one-out (LOO) attributions:

d(x); = f(X)c — f(X@y)e € = argmaxf(x);

jeC

* f(x) is the probability vector for input x, X is obtained by masking i-th pixel in
x, C is the set of class labels
- Measure interquartile range (IQR) for the attribution map:

IQR($(X)) £ Q) (0.75) — Q) (0.25)

- Multi-layer: compute LOO attributions for hidden layer activations as well
- Feed multiple IQR values into logistic regression detector
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Summary RAS

- XAl and adversarial attacks is a rather new field receiving attention in the last
5 years

- There are apparent connections between XAl and adversarial robustness as
claimed by a number of papers
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