

Современные методы машинного обучения

Лекция 1

Турдаков Денис Юрьевич

План

- Вводная часть о курсе
- Задачи машинного обучения
 - Классификация (наивный байесовский классификатор)
 - Кластеризация (k-means)
- Проблемы доверенного искусственного интеллекта

Часть 1. О курсе

Окурсе

- Официальное название спецкурса:
 - бакалавриат «Современные методы машинного обучения»
 - магистратура
- Лекции по средам в 18.00 (ауд. 613)
 - предполагаются базовые знания
 - линейной алгебры,
 - теории вероятности и математической статистики,
 - программирования
 - не все имеют одинаковые знания
 - предполагается, что студенты могут быстро учиться

Окурсе

- Курс ВМК МГУ, ИСП РАН
 - «Живые» лекции очно/в Zoom от сотрудников Исследовательского центра доверенного искусственного интеллекта ИСП РАН, в т.ч. с кафедр ВМК МГУ (СП, АЯ, ИИТ)
 - Теоретические основы
 - Опыт применения на практике
 - Наиболее интересные современные направления
- Итоговая отчетность: устный экзамен

Часть 2. Машинное обучение

Технологии искусственного интеллекта

Искусственный интеллект

Компьютер выполняет «интеллектуальные» действия, которые до этого были доступны только человеку:

- Играет в шахматы
- Ведет простой диалог

Решения основанные на правилах

Машинное обучение

Решения основанные на данных:

- Этап обучения: алгоритм получает примеры вопросов и правильных ответов
- Этап применения: алгоритм получает вопрос и выдает ответ

Глубокое обучение

Иерархия алгоритмов машинного обучения: ответы одних попадают в вход другим

LLM

Модель нейронной сети

1950 1980 2010 2022

Основные понятия

- Х множество объектов
- Y множество меток
- $y: X \to Y$ неизвестная зависимость (целевая функция), значения которой известны на конечном подмножестве объектов

$$\{x_1,\ldots,x_l\}\subset X$$

• $X^l = (x_i, y_i)_{i=1}^l$ – обучающая выборка

Постановка задачи

• По X^l восстановить зависимость y

Признаки объектов

- $f_j:X o D_j,\,j=1\dots n$ признаки объектов (features)
- Множество объектов задается матрицей

$$F = ||f_j(x_i)||_{l \times n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_l) & \dots & f_n(x_l) \end{pmatrix}$$

Алгоритм и модель

- В общем случае зависимость y узнать невозможно, поэтому будем ее приближать некоторой функцией a:X o Y
- Функция $a: X \to Y$ должна допускать эффективную компьютерную реализацию; по этой причине будем называть её алгоритмом
- Поиск оптимального алгоритма осуществляют из предположения, что $a \in A = \{g(x,\theta)|\theta \in \Theta\}$ принадлежит семейству параметрических функций (**модель**), где $g: X \times \Theta \to Y$ фиксированная функция, Θ пространство поиска

Задачи машинного обучения

Задача	На какой вопрос про входные данные пытается ответить
Классификация (Classification)	Это A или B ?
Кластеризация (Clustering)	Как эти данные могут быть сгруппированы?

Задача	На какой вопрос про входные данные пытается ответить
Восстановление регрессии (Regression)	Сколько этого?
Генерация (Generative models)	Как это выглядит? Что похоже на это?
Обучение ранжированию (Learning to Rank)	Упорядочить А и В
Обучение с подкреплением (Reinforsement learning)	Что мне делать сейчас?
Поиск аномалий (Anomaly detection)	Это аномалия?

Классификация: вероятностная постановка

- $X \times Y$ вероятностное пространство с распределением p(x,y) = p(y)p(x|y) из которого случайно и независимо выбирается l наблюдений $X^l = (x_i,y_i)_{i=1}^l$
- Будем аппроксимировать p(x,y) через модель совместной плотности распределения объектов и ответов $\phi(x,y,\theta)$
- Определим значение параметров θ , при которых обучающая выборка данных максимально правдоподобна, то есть наилучшим образом согласуется с моделью плотности (метод максимума правдоподобия)

$$L(\theta, X^l) = \prod_{i=1}^{l} \phi(x_i, y_i, \theta) \to max$$

Наивный байесовский классификатор

• Выбор наиболее вероятного значения

$$\hat{y} = \arg\max_{y \in Y} P(y|x) = \arg\max_{y \in Y} P(y|f_1, \dots, f_n)$$

• По правилу Байеса

$$\hat{y} = \underset{y \in Y}{\operatorname{arg \, max}} \frac{P(f_1, \dots, f_n | y) P(y)}{P(f_1, \dots, f_n)} = \underset{y \in Y}{\operatorname{arg \, max}} P(f_1, \dots, f_n | y) P(y)$$

• «Наивное» предположение об условной независимости признаков

$$\hat{y} = \arg\max_{y \in Y} P(y) \prod_{i=1}^{n} P(f_i|y)$$

Обучение наивного байесовского классификатора

• Сделаем предположение об априорном распределении

$$p(f_i|y,\theta) = \frac{1}{\sqrt{2\pi\sigma_y^2}} exp\left(-\frac{(x_i - \mu_y)^2}{2\pi\sigma_y^2}\right)$$

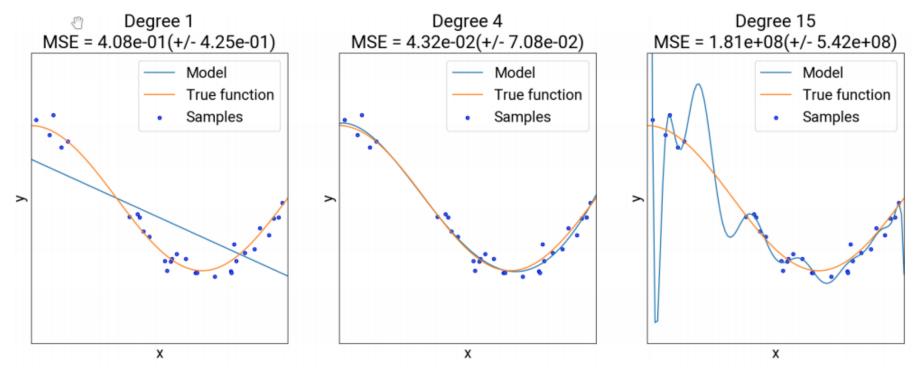
- Воспользуемся методом максимального правдоподобия для оценки среднего и дисперсии распределения
- Оценка для p(y) частоты классов в выборке D
- Получим оценку р(х,у)
 - Можем предсказывать у для произвольного х
 - Можно даже генерировать (х,у). Это генеративная модель

Пример

```
from sklearn.nayve_bayes import *
corpus = [['list of texts'],['classes']]
# initialize classifier
classifier = GaussianNB()
# use unigrams and bigrams as features
vectorizer = CountVectorizer(ngram_range=(1,2))
y = corpus[1]
X = vectorizer.fit_transform(corpus[0])
classifier.fit(X,y) # train classifier
#transform new texts into feature vectors
unseen_texts = ["list of unseen texts"]
feature_vectors = vectorizer.transform(unseen_texts)
answers = classifier.predict(feature_vectors)
```

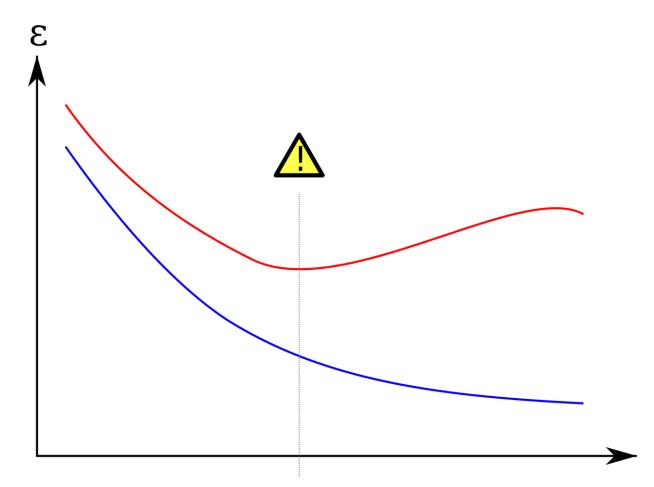
Переобучение

• А что если аппроксимировать данные полиномом с высокой степенью (в качестве признаков брать функции высоких порядков)?



• При d=15 модель получилась слишком сложной и обучилась на шуме

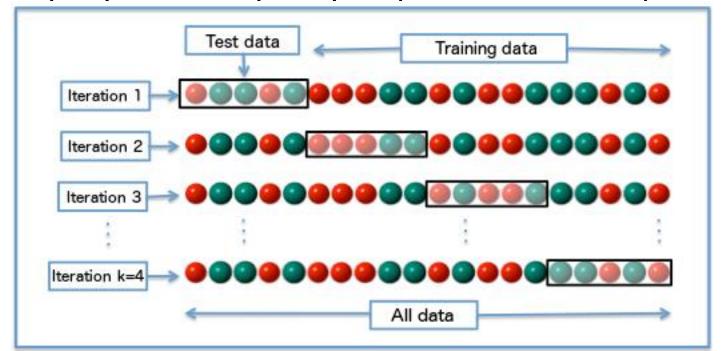
Переобучение



- (Синий) Ошибка на тренировочных данных
- (Красный) Ошибка на валидационных данных

Проведение экспериментов

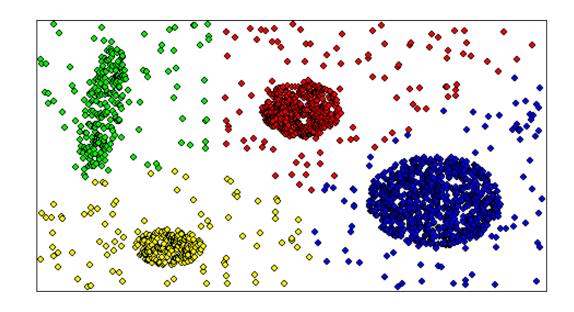
- Данные делятся на несколько частей
 - Тренировочная
 - Тестовая
 - Валидационная
- Перекрестная проверка (cross-validation)



^{*}https://en.wikipedia.org/wiki/ Cross-validation (statistics)

Кластеризация

• Входные элементы можно разбить на несколько групп, по принципу схожести



Вход для алгоритмов

- Пусть каждый объект $\{x_1, x_2, \dots, x_k\}$ представлен вектором $x_i = (f_{i_1}, \dots, f_{i_n})$ в пространстве $X \subseteq R^n$
- Задается расстояние между векторами
 - **—**Евклидово $d(p,q) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + \ldots + (p_n-q_n)^2} = \sqrt{\sum_{k=1}^n (p_k-q_k)^2}$
 - –Чебышева $l_{\infty}(\vec{x}, \vec{y}) = \max_{i=1,...,n} |x_i y_i|$
 - **—Хэмминга** $d_{ij} = \sum_{k=1}^{p} |x_{ik} x_{jk}|.$
 - -Μυнковского $\rho(x,y) = \left(\sum_{i=1}^{n} |x_i y_i|^p\right)^{1/p}$

一...

Алгоритм K-средних (k-means)

- Алгоритм k-means разбивает данные на k кластеров
 - Каждый кластер имеет центр центроид
 - Параметр k задается вручную

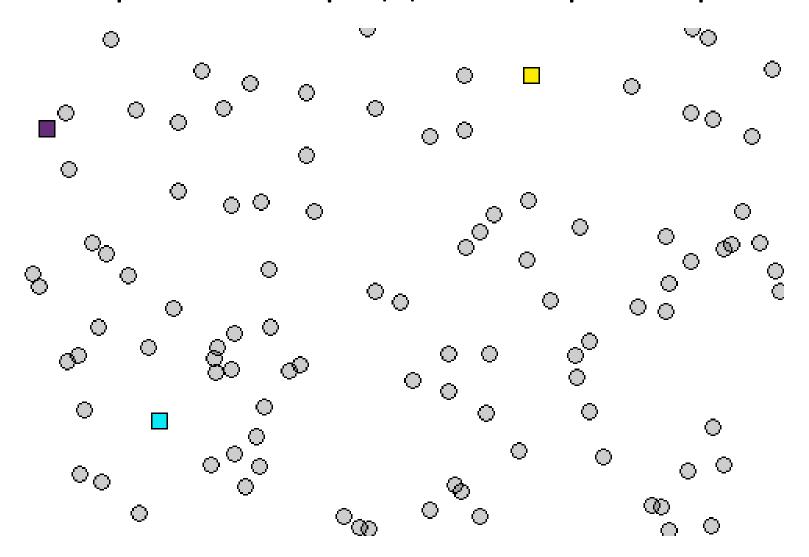
• Алгоритм

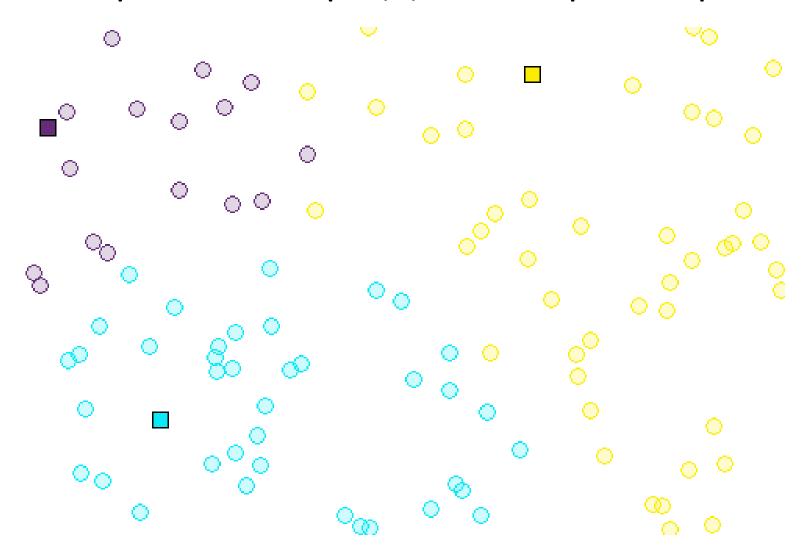
- 1. Выбираются к точек в качестве начальных центроидов
- 2. Сопоставить каждой точке ближайший центроид
- 3. Пересчитать центроиды
- 4. Если алгоритм не сошелся перейти на шаг 2

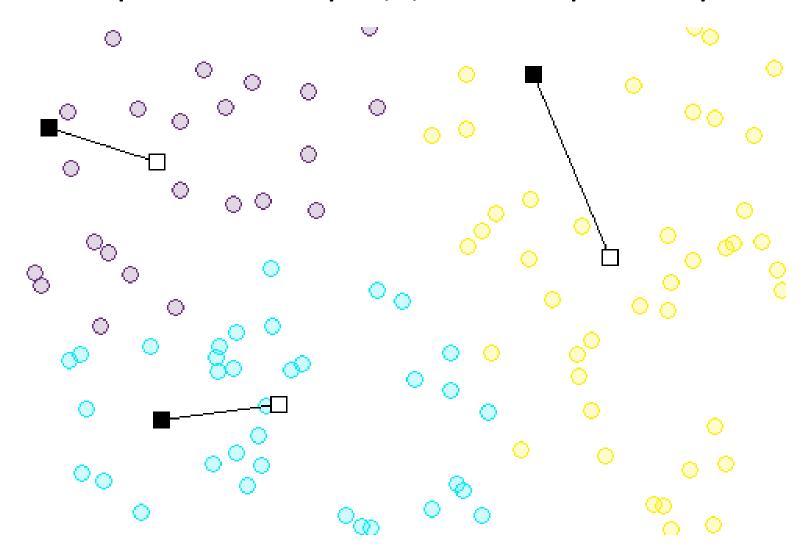
Критерий останова

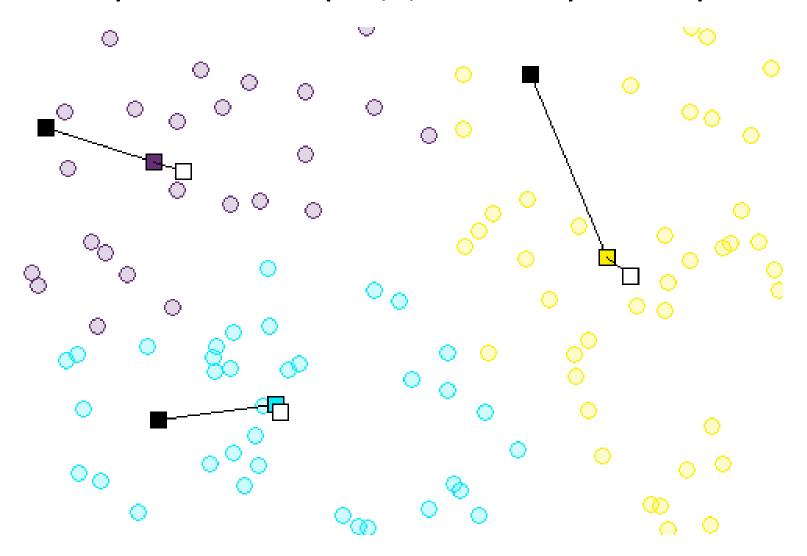
- Нет перехода точек в другой кластер
- Нет (незначительно) изменение центроидов
- Мало убывает погрешность (sum of squared error)

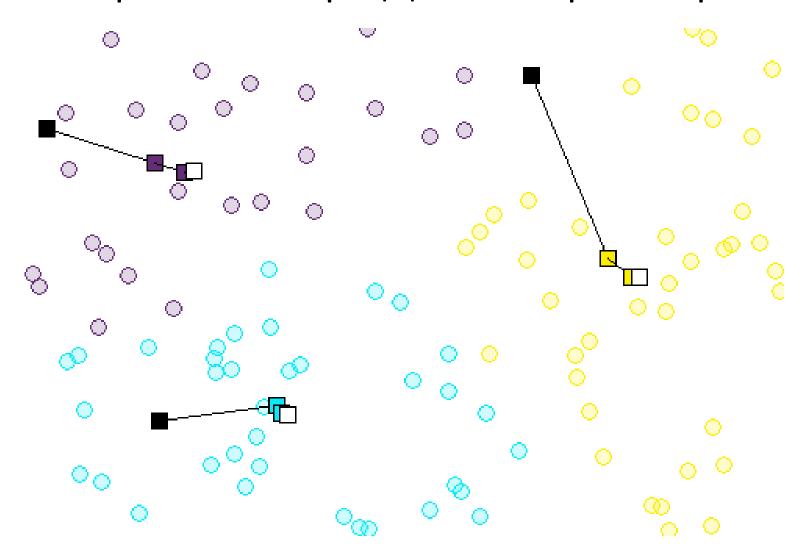
$$SSE = \sum_{j=1}^{k} \sum_{x \in C_j} dist(x, m_j)^2$$







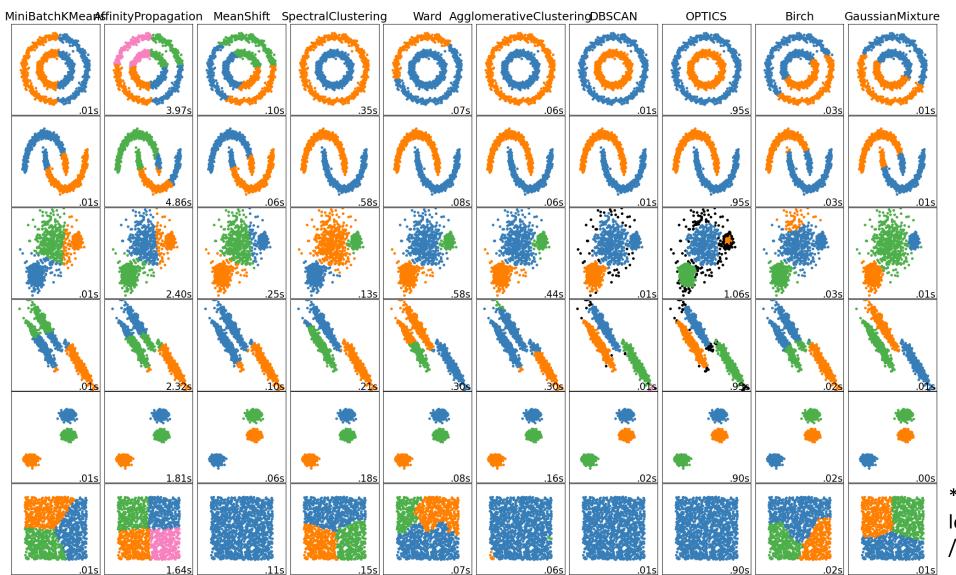




Проблемы K-means

- Алгоритм чувствителен к начальному выбору центроидов
 - запуск с различной начальной инициализацией и выбор варианта с наиболее плотными кластерами
- Чувствителен к выбросам
 - можно фильтровать выбросы
- Не подходит для нахождения кластеров, не являющихся элипсоидами
 - преобразование пространства

Какой алгоритм кластеризации выбрать



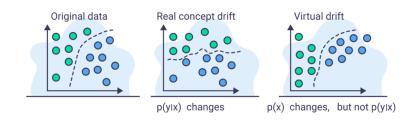
* https://scikitlearn.org/stable/modules /clustering.html

Часть 3. Современные проблемы доверенного искусственного интеллекта

Проблемы с доверием к машинному обучению

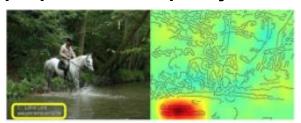
Проблемы разработки и эксплуатации

- Переобучение
- Дрейф данных



Предвзятость моделей

Интерпретация результатов

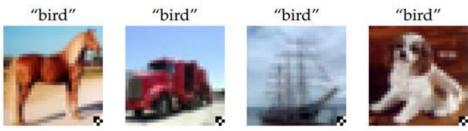


Безопасность

• Состязательные атаки для манипуляции поведением системы



• Встраивание закладок на этапе обучения



- Извлечение конфиденциальных данных из обученных моделей
- «Кража» самих моделей

Дефекты машинного обучения

	Информационная безопасность	Функциональная надежность	Социогуманитарные аспекты
Датасеты	Утечка датасетовЗакладки и отравление данных	 Несогласованность данных Зашумленность данных Неполнота данных (приводят к ухудшению качества и некорректному функционированию моделей) 	 Датасеты противоречат культурным, этическим и правовым нормам Незаконное или неэтичное использование авторских данных
Модели	 Угроза утечки чувствительных данных из модели Угроза несанкционированного доступа через дефекты машинного обучения Угроза внедрения кода или данных 	 Дрейф данных Некорректная обработка выбросов Некорректная интерпретация выводов модели Галлюцинации больших моделей ИИ 	 DeepFake Генерация неэтичного или деструктивного контента

Тактики атак на дефекты ИИ

Комплексное понимание доверия к ИИ

	Информационная безопасность	Функциональная надежность	Социогуманитарные аспекты
Датасеты	 Методы обеспечения информационной безопасности обучающих данных Федеративное и распределенное обучение Дифференциальная приватность Защита от закладок и отравления данных 	 Методы создания высококачественных наборов данных Подходы к созданию согласованных датасетов Методы очистки датасетов Методы заполнения пропущенных данных Аугментация данных 	Методы противодействия угрозам, возникающим при использовании фундаментальных и генеративных моделей в специфичных предметных областях • Инструменты создания обучающих данных и бенчмарков для генеративного ИИ на основе доверенных источников • Бенчмарки соответствия больших моделей ИИ культурным и правовым нормам • Watermarking контента • Инструменты выявления деструктивного контента, сгенерированного ИИ
Модели (обучение)	 Методы реализации и противодействия реализации угроз, специфичных для генеративного ИИ Удаление незначимых частей (сжатие) моделей Методы обучения моделей, повышающие устойчивость к атакам Разучивание примеров Гомоморфное шифрование при обучении 	 Методы обеспечения функциональной надежности моделей машинного обучения в условиях неопределенности Развитие принципов обучения и оптимизации Интерпретируемость моделей Методы оценки неопределенности Физически-информированные нейронные сети (science-informed AI) 	
Модели (эксплуатация)	 Методы обеспечения доверия к интеллектуальным системам на этапе эксплуатации Встраивание водяных знаков в модели и данные для защиты от кражи Повышение устойчивости мультимодальных моделей к атакам через инъекции промптов Бенчмарки безопасности Сертифицированная робастность 	 Методы мониторинга и непрерывной адаптации моделей, функционирующих в нестационарной среде Обнаружение и обработка дрейфа данных Обнаружение и фильтрация выбросов (out-of-distribution) Построение мультиагентных систем Методы переноса знаний (в т.ч. для малоресурсных задач) Гибридный искусственный интеллект 	

План лекций (предварительный)

Nº	Дата	Название	Лектор
1	17.09	Задачи машинного обучения	Турдаков
2	24.09	Введение в нейронные сети	Перминов
3	01.10	Математика полносвязной сети: геометрия, интерпретируемость, SLAP атака	Перминов
4	08.10	Атаки на модели машинного обучения и методы защиты	Чистякова
5	15.10	Задачи обработки изображений. Атаки на методы обработки изображений	Анциферова
6	22.10	Генерация изображений. Диффузионные модели: атаки и защита	Матюшин
7	29.10	Доказательства в машинном обучении. Новые результаты и открытые проблемы	Паутов
8	05.11	Анализ временных рядов. Медицинские приложения, ЭКГ. Устойчивость.	Аветисян
9	12.11	GAN. Создание и детекция дипфеков	Анциферова
10	19.11	Маркировка данных. Борьба с дипфейками	Маркин и КО
11	26.11	Дрейф данных. OOD. Инструменты MLOps.	Рындин
12	03.12	Обучение LLM. RuAdapt	Тихомиров
13	10.12	Генерация кода	Сорокин
14	17.12	RAG	Турдаков

Полезные ссылки

- https://education.at.ispras.ru как попасть на СП / в ИСП РАН
- MOOC Kypc от SRR на Stepik
 - https://stepik.org/course/50352 введение в нейронные сети
 - https://stepik.org/course/54098
- http://www.machinelearning.ru
 - http://www.machinelearning.ru/wiki/index.php?title=Машинное_обучение _(курс_лекций,_К.В.Воронцов)
- https://github.com/dformoso/machine-learningmindmap/blob/master/Machine%20Learning.pdf
- Лекции 2021

Следующая лекция

• Введение в нейронные сети