

Атаки на модели машинного обучения и методы защиты

Чистякова Анна

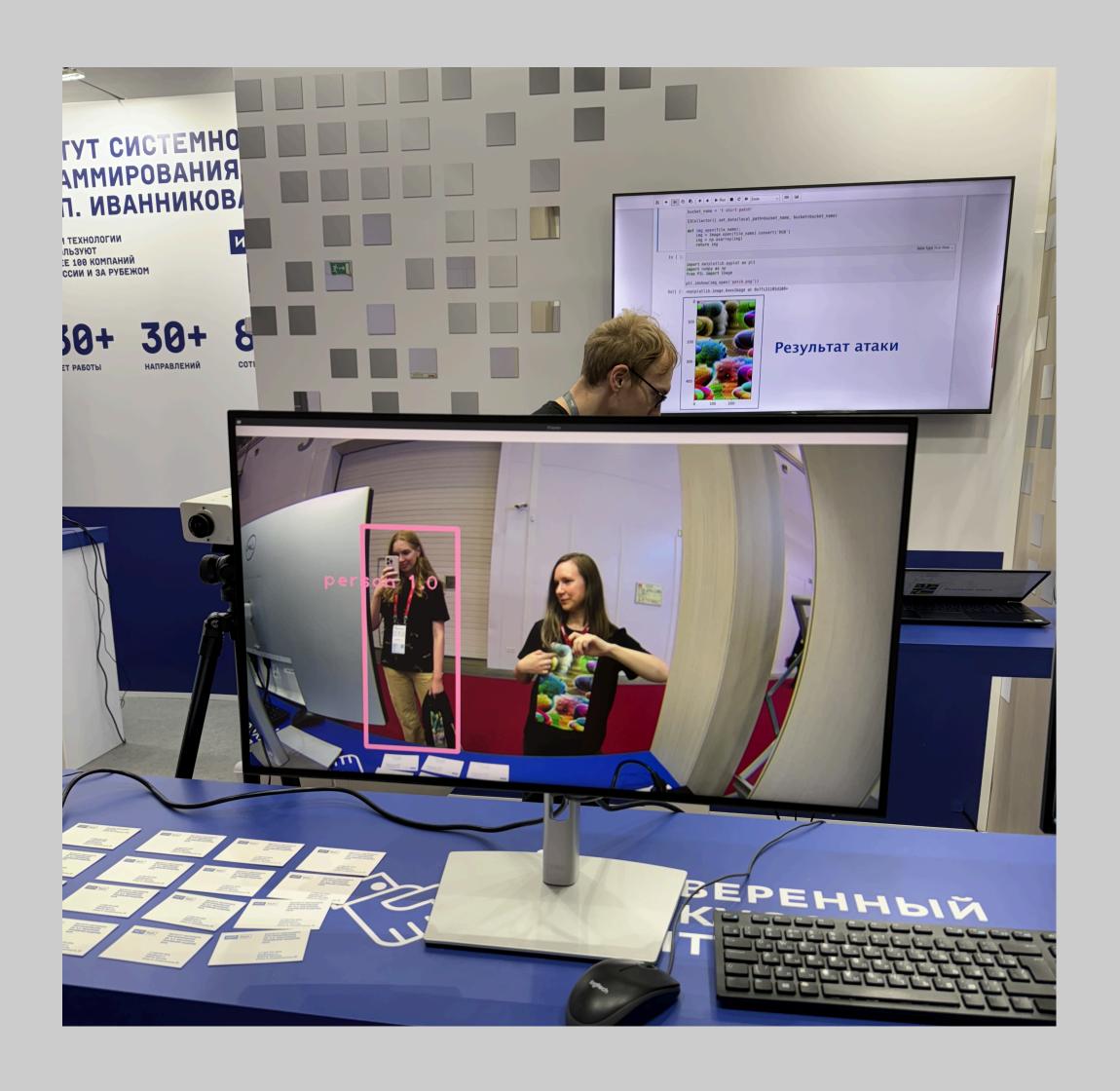
08 октября 2025

«Умный» Ганс

Германия, начало XX века

- Модель может казаться «умной», но опираться на случайные корреляции
- Малейшее изменение среды может полностью разрушить её поведение

Атаки для манипуляции поведением системы



Атаки для манипуляции поведением системы

Vanishing attack

Fabrication attack

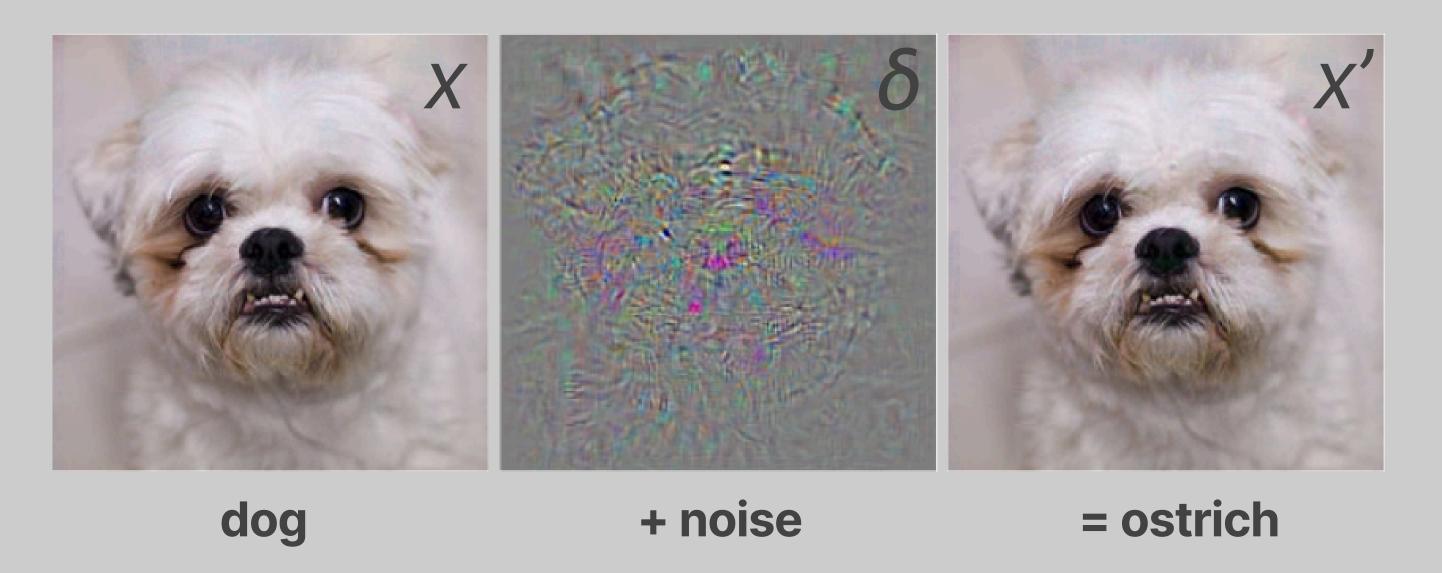
Mislabeling attack

Состязательная атака

Пусть $f:\mathcal{X} o \mathcal{Y}$ — обученная модель и $x \in \mathcal{X}$ — исходный пример с меткой y.

Вектор возмущения $\delta \in \mathbb{R}^d$ порождает состязательный пример $x' = x + \delta$, если выполняется:

$$f(x') \neq f(x)$$
 u $\|\delta\|_p \leq \varepsilon$

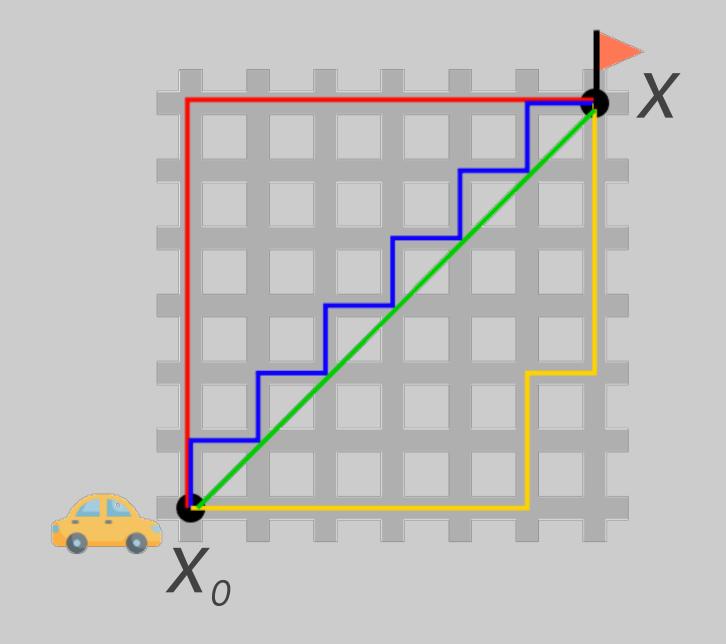


Szegedy et al. "Intriguing properties of neural networks", 2013

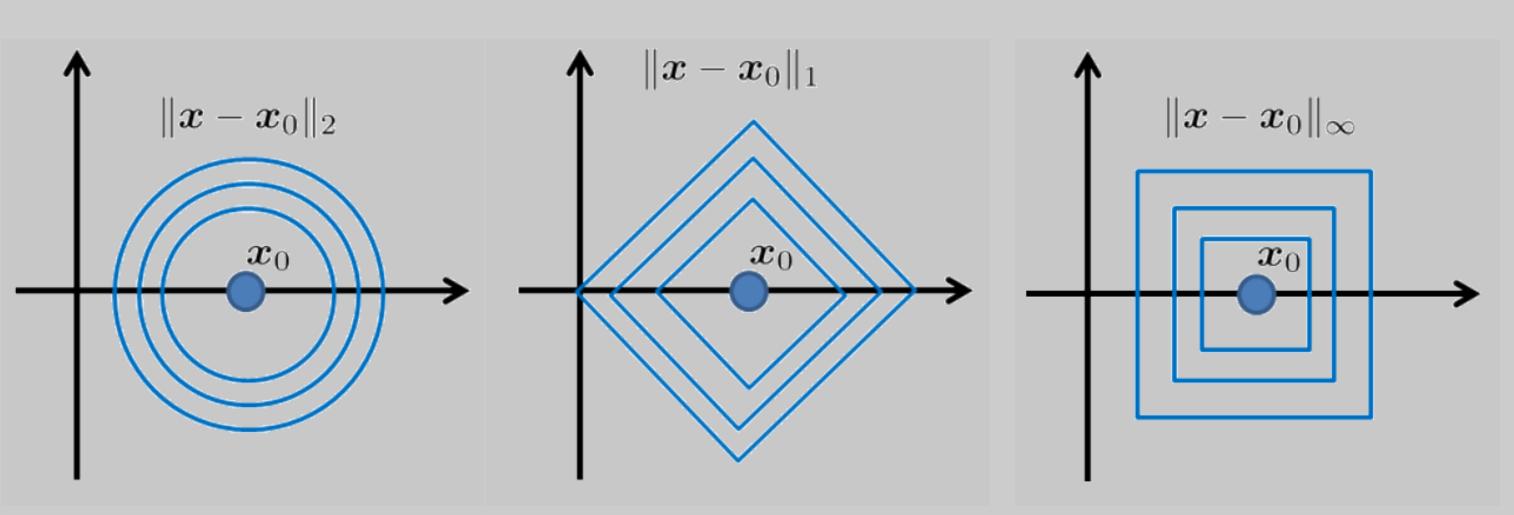
Что такое р-норма?

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$
 для $p \in [1,\infty)$

$$||x||_{\infty} = \max_{i} |x_{i}|$$



- р = 2: евклидово расстояние
- р = 1: манхэттенское расстояние
- р = ∞: максимум по координатам



Градиент функции

• Для функции многих переменных $f(\mathbf{x})$ градиент — вектор частных производных:

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

При малом приращении Дх
изменение функции примерно
равно скалярному произведению:

$$f(\mathbf{x} + \Delta \mathbf{x}) - f(\mathbf{x}) \approx \nabla f(\mathbf{x})^T \Delta \mathbf{x}$$

 Наиболее быстрый рост достигается, если направление приращения сонаправлено с градиентом

Поэтому модели обучаются методом градиентного спуска

Обучение vs Атака

Обучение

- Цель: сделать модель точной
- Меняем веса модели
- Вычисляем градиент ошибки по весам
- Градиент показывает, как увеличить ошибку
- Обновляем веса в направлении уменьшения ошибки:

$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta; x, y)$$

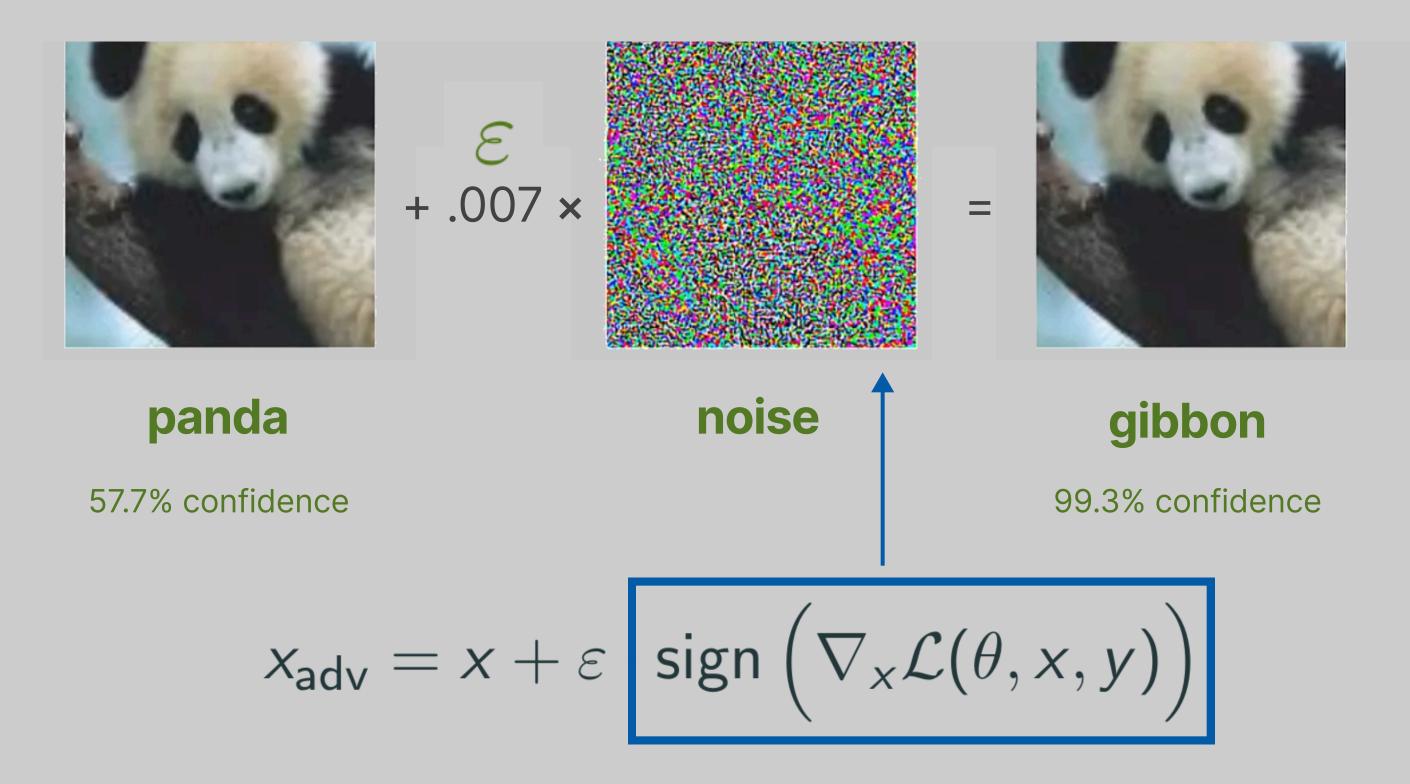
Атака

- Цель: заставить модель ошибаться
- Меняем вход (изображение)
- Вычисляем градиент ошибки по входу
- Градиент показывает, как увеличить ошибку
- Обновляем изображение в направлении увеличения ошибки:

$$x \leftarrow x + \alpha \nabla_{x} \mathcal{L}(\theta; x, y)$$

Атака Fast Gradient Signed Method (FGSM)

Идея: добавить к изображению небольшое возмущение в направлении градиента функции потерь по входу

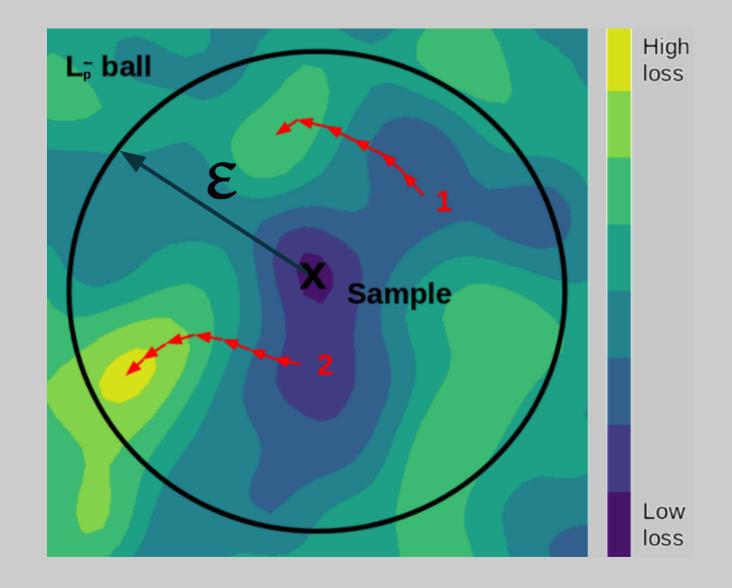


Атака Projected Gradient Descent (PGD)

Идея: итеративное применение FGSM с проекцией на допустимое множество возмущений

$$x_0^{\text{adv}} = x,$$

$$x_{t+1}^{\text{adv}} = clip_{x,\varepsilon} \left(x_t^{\text{adv}} + \alpha \cdot \text{sign}(\nabla_x \mathcal{L}(\theta, x_t^{\text{adv}}, y)) \right)$$



clip — оператор проекции

Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks", 2017

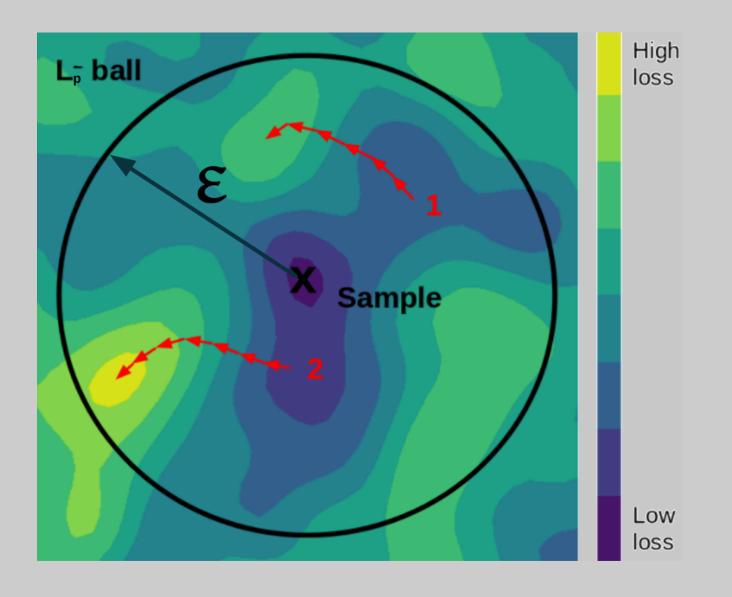
Aтака Projected Gradient Descent (PGD)

Идея: итеративное применение FGSM с проекцией на допустимое множество возмущений

Инициализация: случайный старт внутри Ір-шара радиуса ε.

$$x_0^{\text{adv}} = x + \delta, \qquad \delta \sim \mathcal{U}([-\varepsilon, \varepsilon]^d)$$

$$x_{t+1}^{\text{adv}} = clip_{x,\varepsilon} \left(x_t^{\text{adv}} + \alpha \cdot \text{sign}(\nabla_x \mathcal{L}(\theta, x_t^{\text{adv}}, y)) \right)$$

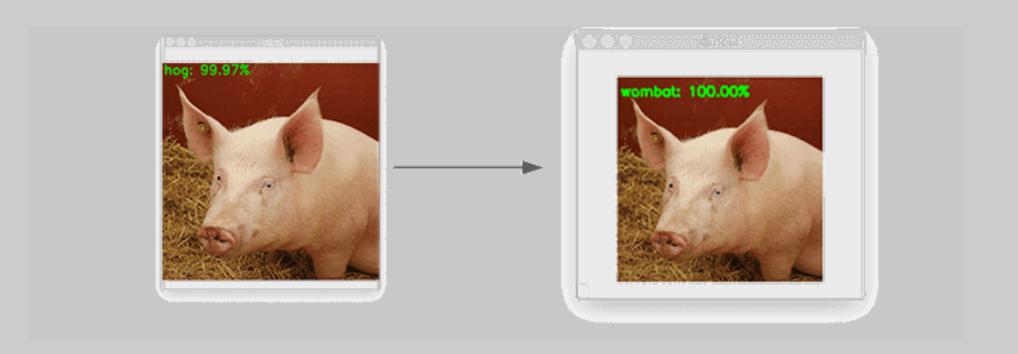


с проекции с проекции

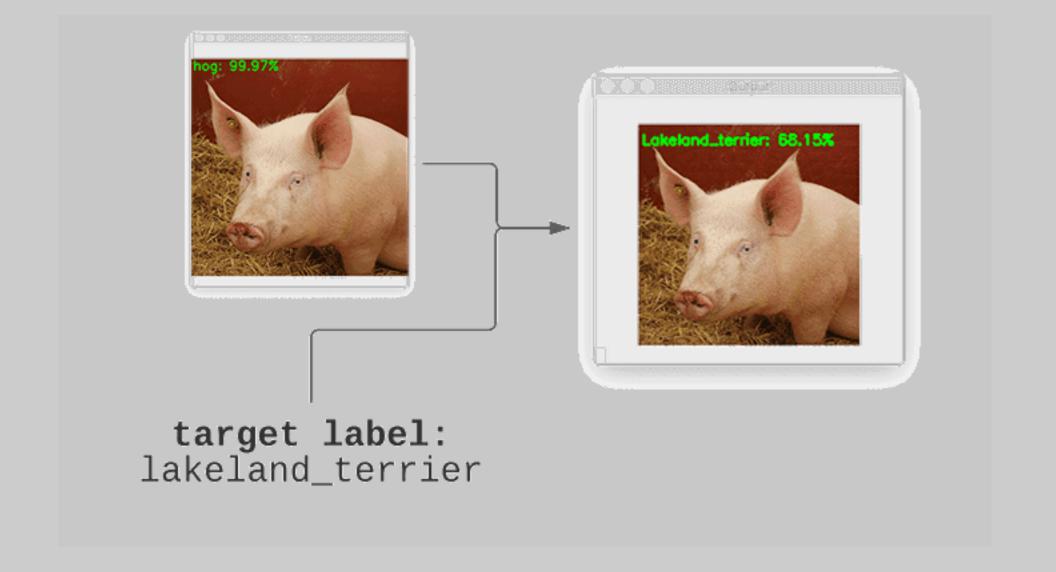
Madry et al. "Towards Deep Learning Models Resistant to Adversarial Attacks", 2017

Цель атаки

Нецелевая атака (untargeted): цель — заставить модель ошибиться любым способом, не важно на какой класс



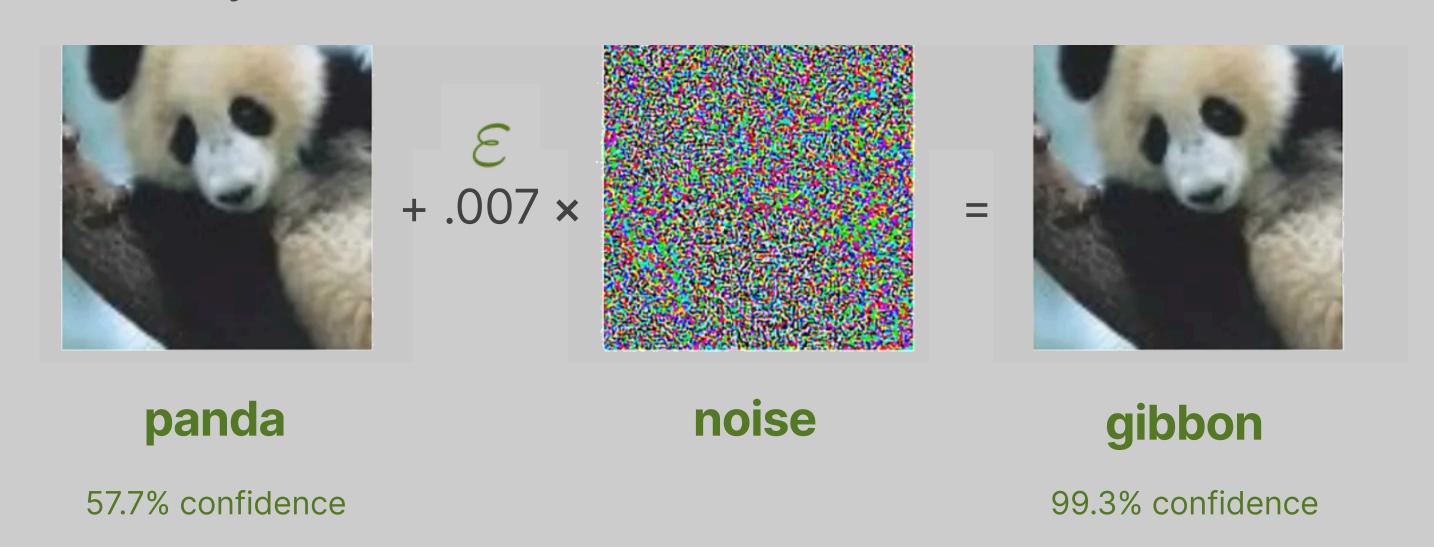
Целевая атака (targeted): цель — заставить модель предсказать конкретный заранее выбранный класс



Что нужно изменить в алгоритмах FGSM и PGD, чтобы сделать атаку целевой?

Атака Fast Gradient Signed Method (FGSM)

Идея: добавить к изображению небольшое возмущение в направлении градиента функции потерь по входу



$$x_{\text{adv}} = x + \varepsilon \cdot \text{sign} \left(\nabla_{x} \mathcal{L}(\theta, x, y) \right)$$
$$x_{\text{adv}} = x - \varepsilon \cdot \text{sign} \left(\nabla_{x} \mathcal{L}(\theta, x, y) \right)$$

Goodfellow et al. "Explaining and Harnessing Adversarial Examples", 2014

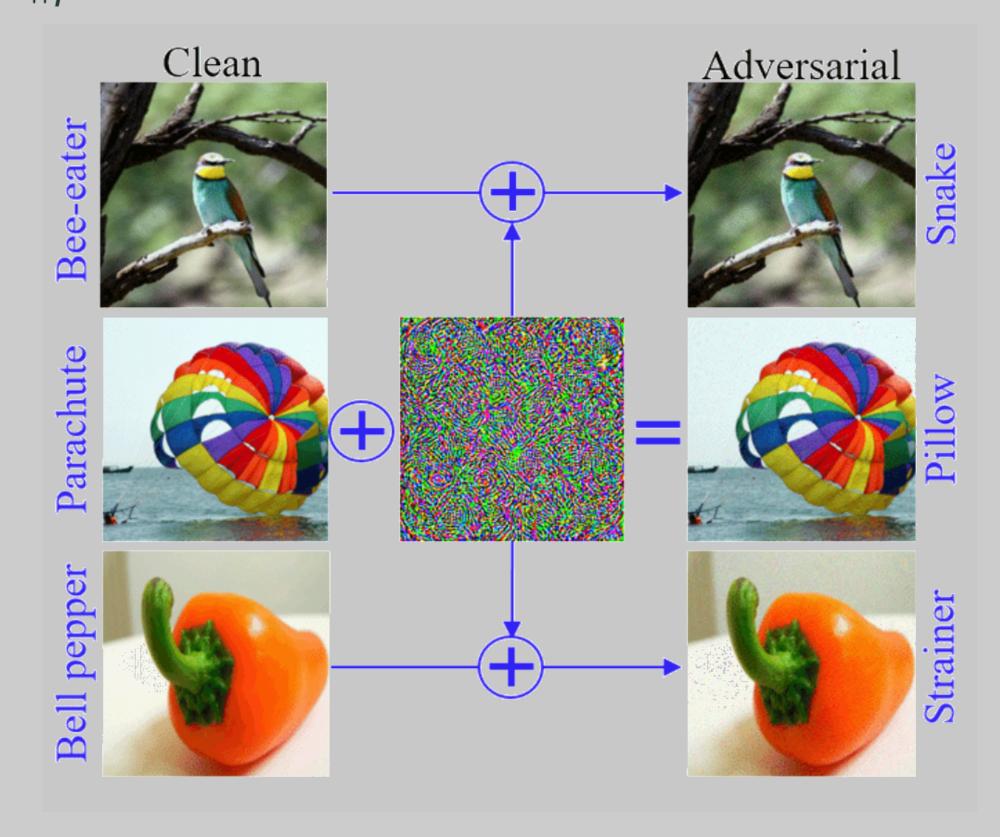
Атака Universal Adversarial Perturbations (UAP)

Идея: найти небольшое δ , такое что для большинства x из выборки:

$$f(x+\delta) \neq f(x)$$
 u $\|\delta\|_p \leq \varepsilon$

Алгоритм:

- 1. $\delta \leftarrow 0$
- 2. По каждому x из набора: если $f(x + \delta) = f(x)$, найти локальное v такое, что $f(x + \delta + v) \neq f(x)$
- 3. Обновить $\delta \leftarrow clip_{\varepsilon}(\delta + v)$
- 4. Повторить шаги 1 3



Moosavi-Dezfooli et al. "Universal adversarial perturbations", 2017

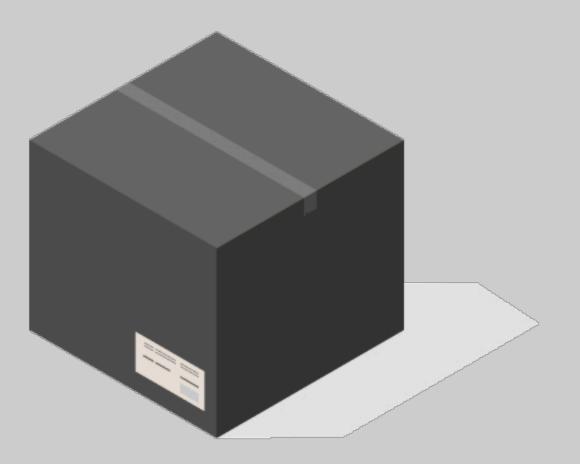
White-box vs Black-box

полный доступ

- Архитектура модели известна
- Веса известны
- Можно получить градиент

ограниченный доступ

- Архитектура модели неизвестна
- Веса неизвестны
- Можно только делать запросы (логиты / вероятности / метки)

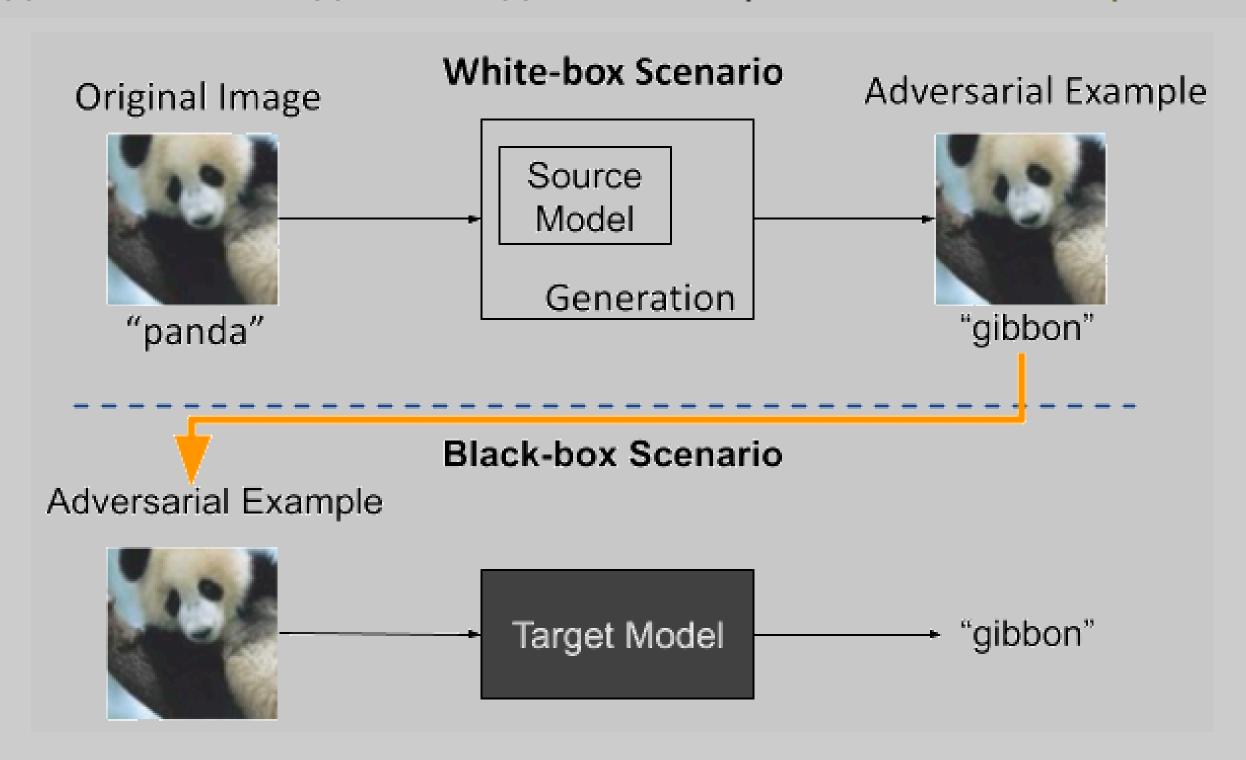


Переносимость (transferability) атак

Состязательные примеры, созданные для одной модели f, могут обмануть и другую модель g, даже если их архитектуры и веса различаются:

$$x' = x + \delta$$
, $f(x') \neq f(x) \Rightarrow g(x') \neq g(x)$

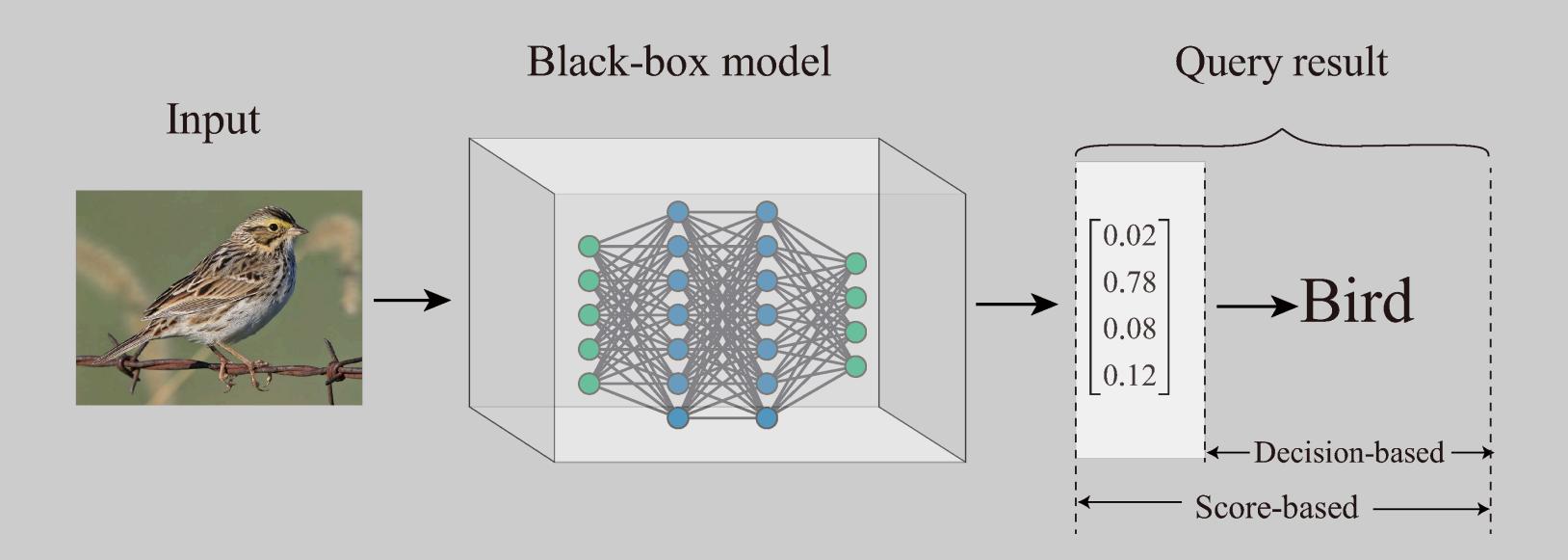
Если это выполняется для заметной доли входов x, говорят, что атака переносима



Decision-based vs Score-based (тип доступа)

Score-based — модель возвращает «мягкие» выходы: вероятности, logits. Атака строится по оценке изменений

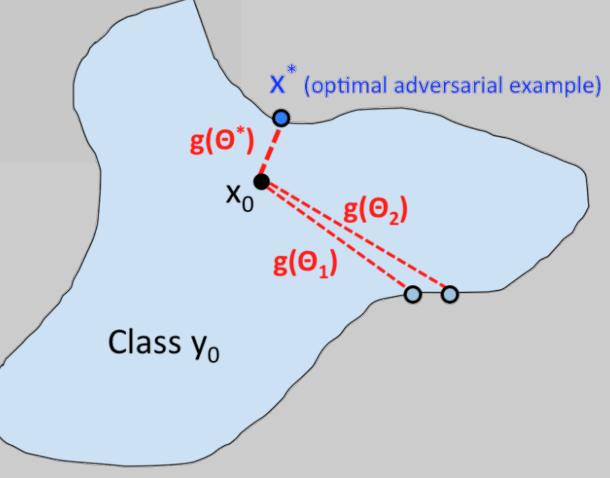
Decision-based — доступ только к финальному классу. Усложнённая задача, требует поиска по пространству



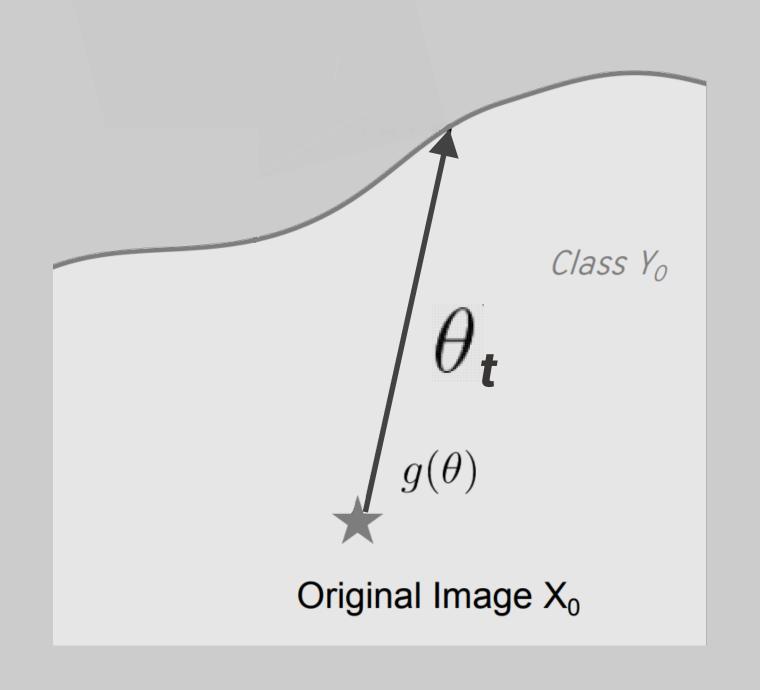
Постановка задачи:

$$\min_{ heta} g(heta)$$
 $g(heta) = \min_{\lambda>0} \lambda$ т.ч. $f\left(x_0 + \lambda \frac{ heta}{\| heta\|}
ight)
eq y_0$

- $g(\theta)$ расстояние от x_0 до ближайшего состязательного примера по
 - направлению θ
- ullet Цель: минимизировать g(heta), изменяя направление heta

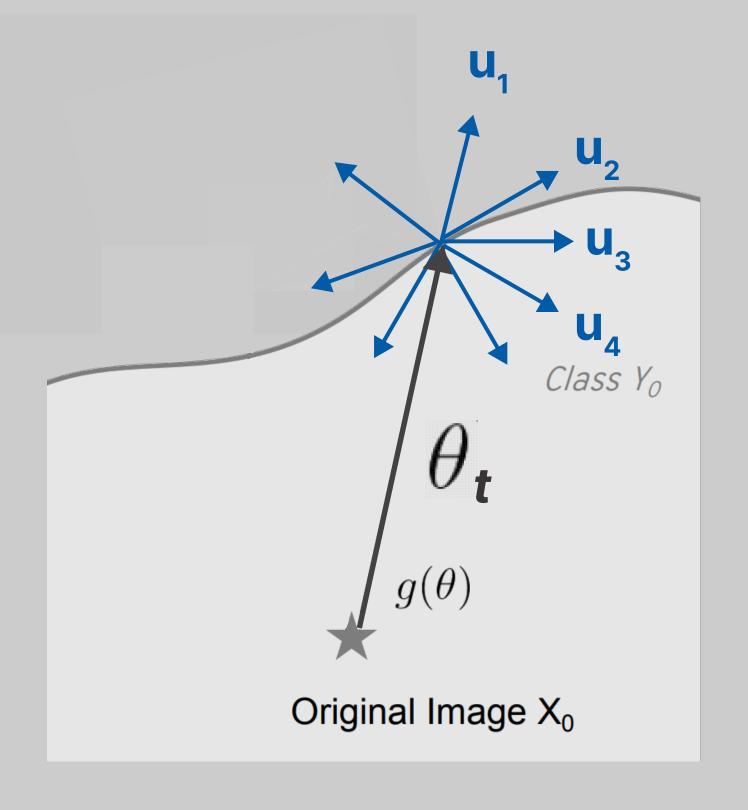


Cheng et al. "Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach", 2018



Оценка градиента методом Монте-Карло:

$$\hat{g} = \frac{1}{Q} \sum_{q=1}^{Q} \frac{g(\theta + \varepsilon u_q) - g(\theta)}{\varepsilon} u_q$$

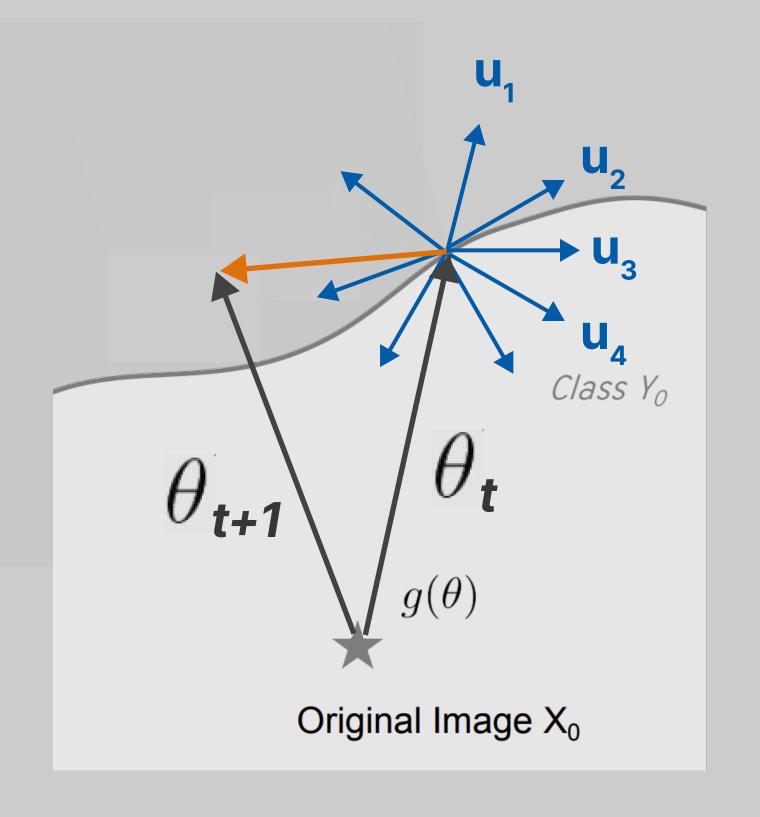


Оценка градиента методом Монте-Карло:

$$\hat{g} = \frac{1}{Q} \sum_{q=1}^{Q} \frac{g(\theta + \varepsilon u_q) - g(\theta)}{\varepsilon} u_q$$

Обновление направления поиска:

$$\theta_{t+1} = \theta_t - \eta \hat{g}$$

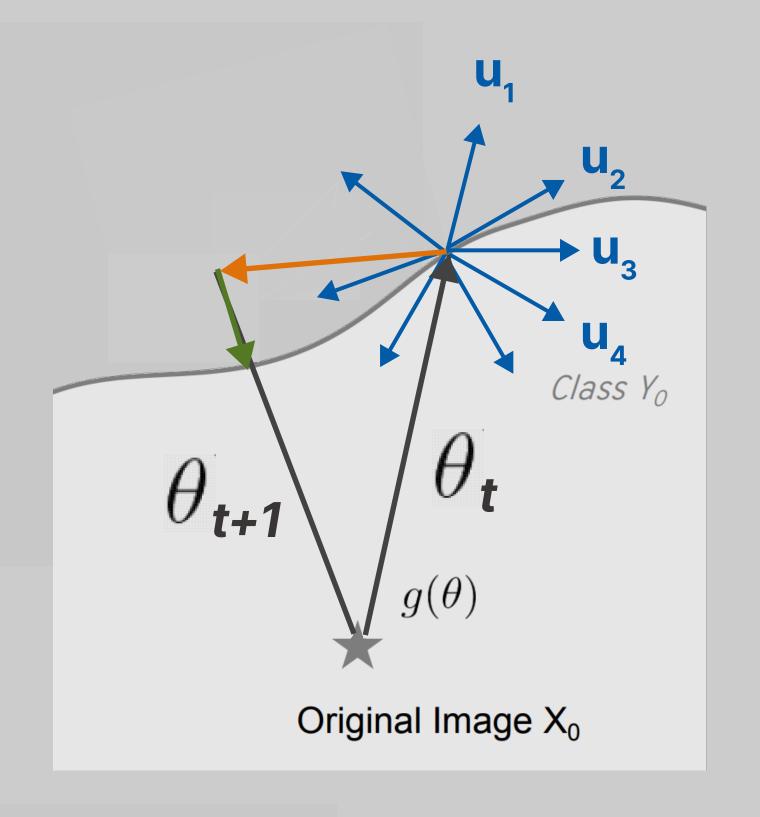


Оценка градиента методом Монте-Карло:

$$\hat{g} = \frac{1}{Q} \sum_{q=1}^{Q} \frac{g(\theta + \varepsilon u_q) - g(\theta)}{\varepsilon} u_q$$

Обновление направления поиска:

$$\theta_{t+1} = \theta_t - \eta \hat{g}$$



• После каждого шага алгоритм возвращается на *границу принятия решения*, чтобы повторно вычислить $g(\theta_{t+1})$

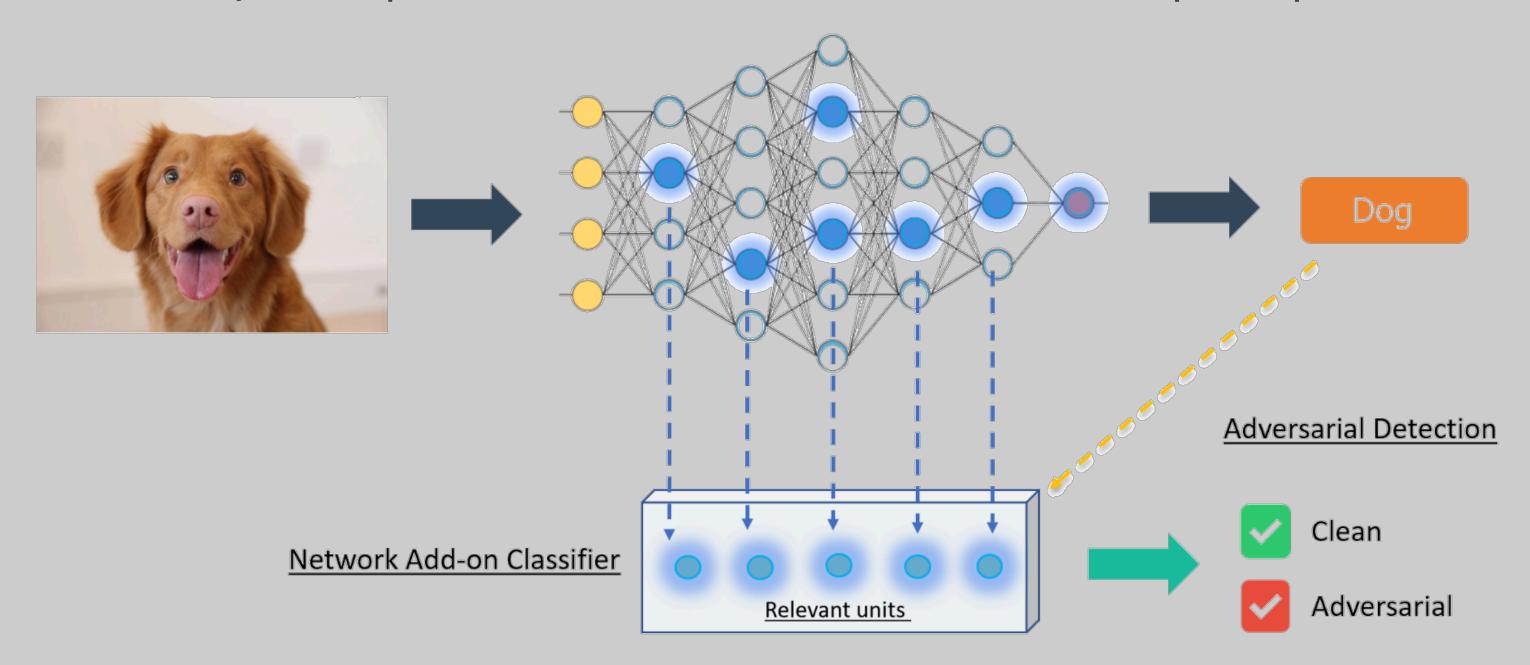
Cheng et al. "Query-Efficient Hard-label Black-box Attack: An Optimization-based Approach", 2018

Защиты от состязательных атак: Detection

Цель: определить, является ли входное изображение атакованным

Методы:

- анализ распределений активаций и выходов модели
- отдельный классификатор для «чистых» / «атакованных» примеров



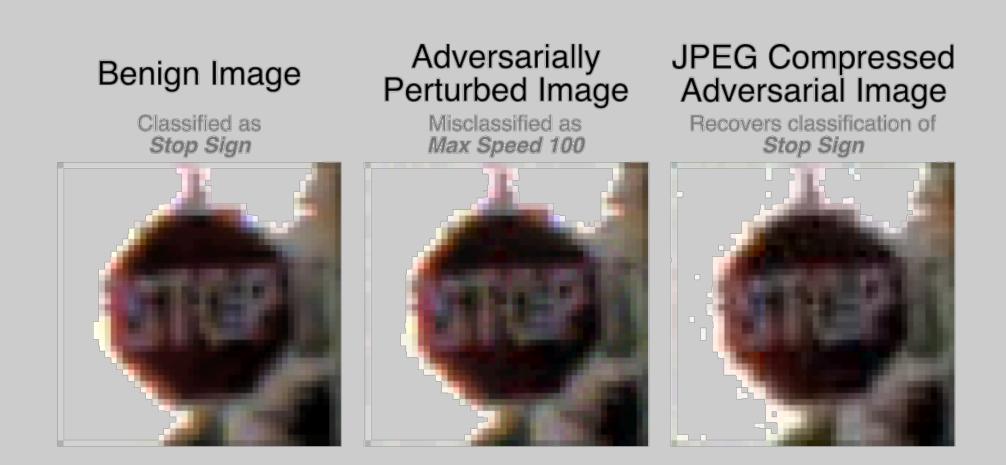
Детектор сам может быть атакован!

Защиты от состязательных атак: Input transformations

Цель: разрушить состязательные возмущения на входе модели

Методы:

- JPEG compression
- random resizing & padding
- median filter



Защиты от состязательных атак: Adversarial training

Цель: научить модель не только хорошо предсказывать на чистых данных, но и быть устойчивой к атакам в пределах допустимого радиуса є

Включает атакованные примеры в процесс обучения:

$$\min_{\theta} \mathbb{E}_{(x,y)} \left[\max_{\|\delta\|_{p} \leq \varepsilon} \mathcal{L}(f_{\theta}(x+\delta), y) \right]$$

- Внутренняя (max) задача: найти наихудшее возмущение δ , которое максимально увеличивает ошибку модели
- Внешняя (min) задача: обучить параметры θ так, чтобы минимизировать ошибку даже при таких возмущениях

Вычислительно дорого и приводит к снижению точности на исходных данных!

Итоги

- Состязательные атаки не только уязвимость, но и инструмент проверки модели
- Защита моделей это гонка: каждое новое средство защиты порождает более изощрённые атаки, а успешные атаки стимулируют разработку новых защит
- Развивая одно, мы неизбежно улучшаем другое

Вопросы?