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Рост популярности LLM в мире
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Рост популярности LLM в мире

Оценка стоимости LLM компаний инвесторами
● Mistral - 5.8 миллиарда
● XAI - 24 миллиарда
● Anthropic - 40 миллиардов
● OpenAI - 157 миллиардов

Для сравнения (market cap): 
● Siemens ~ 150 миллиардов
● Nvidia ~ 3 триллиона (рост x10 за 4 года)
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Языковое моделирование

Языковые модели оценивают вероятность различных 
текстовых сущностей: символов, слов, последовательностей 
слов.

● Первым человеком в космосе был ___ ?
● Что правдоподобнее: 

○ я съел жареный гвоздь vs я съел жареный стейк
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Где полезно языковое моделирование

Все мы регулярно сталкиваемся с языковым моделированием:

● Автодополнение на клавиатурах телефонов.
● Подсказки в поисковых системах.
● Исправление ошибок в поисковых системах.
● Распознавание речи и др.
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Seq2Seq до трансформеров

● Вектор финального состояния 
должен хранить всю 
информацию из предложения

● По сути является векторным 
представлением 
(эмбеддингом) предложения

● Теряет информацию на 
длинных 
последовательностях
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Механизм внимания (2014)

Автокодирующая модель состоит из:
● Encoder(text) -> vector: переводит 

текст в необходимое векторное 
представление

● Decoder(vector) -> text: 
расшифровывает представление в 
ответ модели

Проблема: в vector помещается 
только общий контекст 

Решение: сохранять векторы для 
каждого слова и подбирать нужные 
под каждый шаг decoder

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint 
arXiv:1409.0473 (2014).
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Transformer (2017)

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Исходно encoder-decoder архитектура.

Каждый блок одинаков и последовательно 
преобразует входной вектор в выходной вектор 
той же размерности.
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Визуализация Self Attention

● The animal didn't 
cross the street 
because it was too 
tired”

● К чему относится 
it: animal или 
street



OpenAI GPT-1 (2018)
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● 12 слоев Transformer decoder (~117 млн.),
● Обучение в 2 этапа:

○ Предобучение (pre-training) на задаче 
моделирования языка

w - слова последовательности, Θ - параметры 
модели

○ Дообучение (fine-tuning) на целевые задачи

● Предобучался только на художественной 
литературе

Radford A. et al. Improving Language Understanding by Generative Pre-Training, 2018, https://openai.com/research/language-unsupervised



OpenAI GPT-1: оценка качества
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Предобучение языковых моделей

● Самый дорогой этап обучения 
языковых моделей

● Языковые модели обучаются на 
терабайтах текстовых данных в 
течение нескольких месяцев 
предсказывать следующее 
слово

● В модель закладываются знания 
о мире и о языке

● Необходимы вычислительные 
кластеры с тысячами 
видеокарт 12



Инструктивное дообучение

● На этапе предобучения, модель 
научилась понимать текст, но не 
отвечать на вопросы!

● Снова задача языкового 
моделирования, но на 
специально подготовленных 
диалогах

● Занимает менее 0.1% вычислений 
по сравнению с предобучением
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GPT-2 (2019) – универсальный генератор 
текстов

● Новая парадигма: любой текст содержит 
подсказки к генерации (prompt) и обучаясь на 
большом наборе текстов модель учится их 
понимать
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● Улучшенная архитектура: 
предварительная нормализация (Pre-LN) 
входных данных для стабилизации градиентов

● Больше параметров:  
в 4 раза больше слоев (1.5 млрд параметров) 
– больше потенциальных знаний (capacity)

Radford A. et al, Language Models are Unsupervised Multitask Learners, 2019, https://openai.com/research/better-language-models



GPT-2: датасет для предобучения
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● Создали свой набор данных (WebText),
● Брали ссылки с Reddit, которые имели достаточный рейтинг (45 

млн. ссылок),
● Дополнительная очистка на основе ряда эвристик, дедубликация, 
● Намеренно удалили Wikipedia ссылки из WebText,
● Итого 40GB текстов или 8 млн. документов.

Одна из основ успеха модели - качественный набор данных для 
предобучения!



GPT-2: zero-shot возможности

16
Radford A. et al, Language Models are Unsupervised Multitask Learners, 2019, https://openai.com/research/better-language-models



GPT-2: zero-shot возможности
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Добавление TL;DR: повышает ROUGE-1 с 21.5 до 29.3 (подсказки к 
генерации!)



Пример порождения новостей (перевод)
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Подводка: Шокирующая находка: ученый обнаружил стадо единорогов, живущих в 
отдаленной, ранее неизведанной долине, в Андах. Еще более удивительным для 
исследователей было то, что единороги прекрасно говорили по-английски.

GPT-2: Доктор Хорхе Перес, биолог-эволюционист из Университета Ла-Паса, и 
несколько его товарищей исследовали Анды, когда обнаружили небольшую 
долину, где не было других животных или людей. Перес заметил, что в долине 
есть что-то похожее на естественный фонтан, окруженный двумя пиками скалы и 
серебристым снегом. 

Перес и остальные отправились дальше в долину. … Перес и его друзья были 
поражены, увидев стадо единорогов. Этих существ можно было увидеть с 
воздуха — они были так близко, что могли коснуться своими рогами.

Изучая этих причудливых существ, ученые обнаружили, что существа также 
говорили на довольно обычном английском языке…



GPT-3 (2020) – первая коммерческая модель

● Ориентация на рынок: модель как облачный сервис
● 175 млрд параметров: 96 слоев Transformer-decoder 
● Оптимизация потребления памяти: половина слоев внимания 

используют разреженные матрицы (локальные окна)
● Развитие парадигмы подводок (prompt): 

“обучение в контексте” (in-context learning)
● Обучение на доверенных данных: примеры для обучения 

смешиваются пропорционально их качеству (согласно экспертам)
● В 15 раз больше данных: добавлена очищенная коллекция 

CommonCrawl (570GB) и два новых корпуса книг (95GB)

19
Brown T. et al., Language Models are Few-Shot Learners, 2020, arXiv:2005.14165
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“Обучение в контексте”

“Обучение в контексте”Стандартная подводка



“Обучение в контексте” работает только для 
больших моделей (опровергнуто в будущем)

21

Пример решаемой задачи:

Средняя эффективность 
на всех задачах:



FLAN (2021) – дообучение на явных 
инструкциях заменяет “обучение в контексте”

22
Wei J. et al. Finetuned Language Models Are Zero-Shot Learners ICLR 2022.



Только большие модели понимают 
инструкции
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Few-shot - “обучение в контексте” 
на 5 примерах

!!! Опровергнуто в дальнейшем в современном понимании instruct tuning



Chain-of-thought (CoT): повышение качества 
без дообучения

24https://ai.googleblog.com/2022/05/language-models-perform-reasoning-via.html



Автоматические рассуждения возможны с FLAN
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Chain-of-thought инструкции необходимы 
для сохранения способности рассуждать

Chung H. et al. Scaling Instruction-Finetuned Language Models //arXiv preprint arXiv:2210.11416. – 2022.



InstructGPT
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● GPT-3 в основе,
● Инструкции,
● RLHF (обучение с подкреплением).

Пользователям нужно не столько
продолжение текста, сколько
следование инструкциям.

Ouyang L. et al. Training language models to follow instructions with human feedback //arXiv preprint arXiv:2203.02155. – 2022.

Затравка:

Сколько жён в самый раз? Три или одна?

GPT:

На вопрос на такой есть ответ простой - 
Если б я был султан - был бы холостой!

InstructGPT:

Одна



Инструкции (датасет промптов)
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● labeler – составленные асессорами,
● customer – составленные пользователями API для своих 

нужд.

Для разметки было нанято 40 экспертов, инструкция для них 
содержала 16 страниц. Согласованность между асессорами 
составила ~72%.

Распределение 
инструкций по 
задачам



Инструкции (примеры)
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Инструкции (few-shot примеры)
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Результаты (сравнение с SFT)
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● По y - как часто люди 
предпочли ответ модели 
против ответа SFT 175B,

● 1.3 млрд. модель 
предпочитали чаще, чем 
SFT 175B

● Результаты звучат 
сомнительно



Результаты (NLP задачи)
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● Слева few-shot, справа zero-shot,
● У instruct моделей нет 

преимущества при решении 
данных целевых задач.



ChatGPT = InstructGPT
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Специальные диалоговые инструкции:

● Корпус инструкций сконвертировали в диалоговый формат,
● Были созданы диалоги, в которых один аннотатор играл роль ИИ-

ассистента, а другой человека. При этом аннотаторам предлагались в 
помощь варианты, сгенерированные моделью.

Итеративное дообучение. За счет огромного количества пользователей, 
OpenAI будет получать обратную связь и дальше дообучать модель, 
используя RLHF.



ChatGPT не надежен
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ChatGPT не надежен
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GPT vs FLOPS: сколько стоит GPT
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Для обучения GPT-3 175B (3640 PF-days, $4.6M-$12M) потребовалось бы 7 месяцев 
обучения на 512 V100, или 43 дня на 512 A100 (₽70M и 112 месяцев на Volta-1).

Стоимость обучения InstructGPT: 4.9 PF-days для SFT и 60 PF-days для PPO-ptx.



Cколько стоит LLaMa-3.1-405B
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● Обучение модели стоило 3.8 × 10^25 FLOPs или 38 иоттафлопс.
● Использовался кластер из 16000 H100
● В 100 раз “дороже”, чем GPT-3 175B



Deepseek-V3 
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● Модель от китайских производителей, 671B параметров (37B активных)
● Использовался кластер из 2048 H800, 2.8M GPU часов (~ 60 дней).
● Корпус из 14.8T токенов
● Обучение полностью в FP8! (впервые). Доступно только на H100 серии.



Scaling Law
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L - loss
N - количество параметров модели
D - количество токенов в корпусе
E - неуменьшаемый компонент

Hoffmann J. et al. Training compute-optimal large language models. arXiv //arXiv preprint arXiv:2203.15556. – 2022.



Scaling Law
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● На примере определенного датасета среднего качества
● Важность данных = Важность размера модели!!!



Scaling Law
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Gopher - 280B, 300B 
Chinchilla - 70B, 1.4T

Итоговый компьют (flops) 
одинаковый!



MiniCPM подход: два этапа обучения

41https://shengdinghu.notion.site/MiniCPM-Unveiling-the-Potential-of-End-side-Large-Language-Models-d4d3a8c426424654a4e80e42a711cb20



MiniCPM подход: annealing phase
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Ruadapt



Токенизация
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Как можно представить текст для нейронной сети перед векторизацией?
● Символы: ['Б', 'о', 'л', 'ь', 'ш', 'и', 'е', ' ', 'я', 'з', 'ы', 'к', 'о', 'в', 'ы', …]

○ Семантика единицы минимальна.
○ Длина последовательности = количеству символов.

● Слова: ['Большие', 'языковые', 'модели', 'в', 'вопросно-ответных', …]
○ Разных слов только на одном языке миллионы.
○ Богатая морфология “ухудшает” ситуацию.

● Леммы: ['большой', 'языковой', 'модель', 'в', 'вопросно-ответный', …]
○ Основной рабочий вариант раньше,
○ Размеры словаря ~200-500 тыс. слов, остальное UNK.
○ Теряется морфология.



Токенизация: subword tokenization
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● Метод разбиения текста на “подслова”
● Частотные слова представляются одним токеном
● Редкие слова разбиваются на несколько токенов
● Любое слово представимо, так как словарь содержит в 

себе подстроки до уровня символов.
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Проблема токенизаторов 
мультиязычных LLM

● Многие модели 
мультиязычные, но качество 
разнится в зависимости от 
языка, в основном они 
ориентированы на английский.

● Лучшие LLM (Large Language 
Models) для русского языка 
англоязычные.

● Экономическая 
эффективность использования 
LLM, зависит от токенизации, а 
у большинства открытых LLM на 
русском языке она “слабая”.



Проект Ruadapt

4
7

Цель - перенос мультиязычных LLM на русский язык с 
заменой токенизации для достижения:

1. Повышения эффективности работы LLM на языке
2. (опционально) Повышение качества работы LLM на 

языке



Шаг 1: подготовка более подходящей 
токенизации

48



Шаг 2: адаптация базовой версии LLM

49Tikhomirov, M. M., Chernyshev D. I. Impact of Tokenization on LLaMa Russian Adaptation, Proceedings of Ivannikov ISPRAS Open Conference (2023)



Первые эксперименты по адаптации
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Сравнение качества моделей на RSG с дообучением

Сравнение качества инструктивных версий моделей на RSG в zero-shot

● Бенчмарк: Russian Super Glue
● Решалась задача адаптации LLaMa-7B на русский язык путем 

замены токенизации

Tikhomirov M., Chernyshev D. Impact of Tokenization on LLaMa Russian Adaptation //arXiv preprint arXiv:2312.02598. – 2023.



Оценка качества и вычислительной 
эффективности

Сравнение путем выбора лучшей 
генерации из двух (side-by-side).

Было подготовлено 78 вопросов 
для моделей,15 аннотаторов.

До 60% прироста в скорости при 
генерации и до 35% прироста в 
скорости при обучении.

51Сравнение качества инструктивных версий моделей людьми Сравнение вычислительной эффективности при генерации



Обучение в 2 этапа
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Эксперименты проводились с 
моделью Solar-10.7B
● На первом адаптация только 

эмбеддингов
● На втором дообучение вместе 

с внутренними слоями методом 
LoRa

● Был отдельно проверен случай, 
когда первый этап пропущен

Tikhomirov M. M., Chernyshev D. I. Improving Large Language Model Russian Adaptation with Preliminary Vocabulary Optimization //Lobachevskii 
Journal of Mathematics. – 2024. – Т. 45. – №. 7. – С. 3211-3219.
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● Адаптация происходит для базовых моделей, не 
инструктивных

Почему недостаточно адаптации базовой 
версии недостаточно
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● Адаптация происходит для базовых моделей, не 
инструктивных

● Пользователи обычно взаимодействуют именно с 
инструктивными!

Почему недостаточно адаптации базовой 
версии недостаточно
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● Адаптация происходит для базовых моделей, не 
инструктивных

● Пользователи обычно взаимодействуют именно с 
инструктивными!

● Требуется воспроизводить процедуру instruct-tuning с базы
○ LLaMa-3 обучалась на 10 миллионах инструкций (датасет не 

опубликован!)
○ Лучшая версия модели mistral openchat-3.5 обучалась на 

датасете, который также закрыт

Почему недостаточно адаптации базовой 
версии недостаточно
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Основная идея:

● Адаптировать базовую 
модель

● Рассчитать проекцию из 
эмбеддингов исходной 
базовой в инстракт версию

● Применить проекцию на 
адаптированную базу 

Tikhomirov M., Chernyshev D. Facilitating large language model Russian adaptation with Learned Embedding Propagation // 2024

Шаг 3: Адаптация инструктивных версий (Learned 
Embeddings Propagation)



Шаг 4: Дообучение после LEP (опционально)
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● Проекция не точна и модель 
нужно дополнительно 
откалибровать
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● Проекция не точна и модель 
нужно дополнительно 
откалибровать

● Как вариант калибровки - 
дообучение на 
русскоязычных инструкциях 
(с эмбеддингами)

Шаг 4: Дообучение после LEP (опционально)
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● Проекция не точна и модель 
нужно дополнительно 
откалибровать

● Как вариант калибровки - 
дообучение на 
русскоязычных инструкциях 
(с эмбеддингами)

● Растет качество, падает 
количество “артефактов”, 
таких как зацикливание или 
выдуманные слова.

Шаг 4: Дообучение после LEP (опционально)



Пример адаптации знаний
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Ruadapt: метрики



Заключение
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● Популярность LLM продолжает расти
● В основе современных LLM лежит архитектура трансформер и 

механизм внимания
● Развитие LLM прямо связано с вычислительными ресурсами
● Хорошая LLM = Данные + GPU + специалисты


