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Общая теория диффузионных моделей;
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Общая теория диффузионных моделей

Возможности диффузионных моделей

Качество генерации
диффузионных моделей (DDPM)

Вариации изображение при
помощи диффузионных моделей
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Общая теория диффузионных моделей

Интуитивное понимание

Матюшин Дмитрий ИСП РАН 22 октября 2025 г. 4 / 121



Общая теория диффузионных моделей

Основная идея диффузии

Прямой процесс
диффузии - итеративно
зашумляет
изображение.

Обратный
диффузионный процесс
- итеративно очищает
изображение от шума.

Процесс обучения модели

Процесс генерации изображений
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Общая теория диффузионных моделей

Схема работы диффузионной модели
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Общая теория диффузионных моделей

Аппроксимация гауссианами

Аппроксимируем распределения переходов гауссианами:

p(xi|xi+1) ≃ pθ(xi|xi+1)

q(xi+1|xi) ≃ qφ(xi+1|xi)

Рассмотрим:
qφ(xt|xt−1) = N (xt|axt−1, b

2I)

Выберем a и b так, чтобы распределение xt стало N (0, I), когда t
достаточно велико.
Решениe: a =

√
α и b =

√
1− α, то есть

qφ(xt|xt−1)
def
= N (xt|

√
αtxt−1, (1− αt)I)
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Общая теория диффузионных моделей

Доказательство a =
√
α и b =

√
1− α

Эквивалентный шаг выборки:

xt = axt−1 + bϵt−1, ϵt−1 ∼ N (0, I).

Продолжая рекурсию, можно показать, что:
xt = axt−1 + bϵt−1 = a(axt−2 + bϵt−2) + bϵt−1 = · · · =
= atx0 + b

∑t−1
i=0 a

iϵt−1−i
def
= atx0 + wt

Это - конечная сумма независимых гауссовских случайных величин.
Среднее значение E[wt] = 0, т.к. все средние значения равны нулю.
Ковариация для вектора с нулевым средним будет:

Cov(wt)
def
= E[wtw

T
t ] = b2(Cov(ϵt−1)+a

2Cov(ϵt−2)+· · ·+a2(t−1)Cov(ϵ0)).
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Общая теория диффузионных моделей

Доказательство a =
√
α и b =

√
1− α

Поскольку ковариации Cov(ϵi) = I, это даёт:

Cov(wt) = [b2
t−1∑
i=0

a2i]I = [b2
1− a2t

1− a2
]I.

Когда t→∞, at → 0 для любого 0 < a < 1, поэтому при предельном
значении t =∞:

lim
t→∞

Cov(wt) =
b2

1− a2
I.

Чтобы limt→∞Cov(wt) = I, необходимо b =
√
1− a2.

Если выбрать a =
√
α, то b =

√
1− α. Поэтому

qφ(xt|xt−1) = N (xt|
√
αtxt−1, (1− αt)I)
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Общая теория диффузионных моделей

Итеративное изменение распределения

Пример: взвешенная сумма двух гауссиан

pt(x) = π1N (x|µ1, σ
2
1) + π2N (x|µ2, σ

2
2).

Запустим для нее прямой процесс диффузии:

pt(x) = π1N (x|
√
αtµ1,t−1, αtσ

2
1,t−1+(1−αt))+π2N (x|

√
αtµ2,t−1, αtσ

2
2,t−1+(1−αt))

Для примера возьмем π1 = 0.3, π2 = 0.7, µ1 = −2, µ2 = 2, σ1 = 0.2 и
σ2 = 1. Шаговая функция: αt = 0.97 для всех t.

Функции распределения вероятностей для различных значений t
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Общая теория диффузионных моделей

Вывод формулы для qφ(xt|x0)
Докажем, что qφ(xt|x0) = N (xt|

√
ᾱtx0, (1− ᾱt)I) , где ᾱt =

∏t
i=1 αi.

Шаг выборки:

xt =
√
αtxt−1 +

√
1− αtϵt−1, ϵt−1 ∼ N (0, I)

Рекурсивно подставим значения xt−1, xt−2, ..., x0 в это выражение:

xt =
√
αt

(√
αt−1xt−2 +

√
1− αt−1ϵt−2

)
+
√
1− αtϵt−1 =

=
√
αtαt−1xt−2+

√
αt(1− αt−1)ϵt−2+

√
1− αtϵt−1

def
=
√
αtαt−1xt−2+w1

w1 соответствует сумме двух гауссиан, которая тоже является
гауссианой. Вычислим новую ковариацию (среднее по-прежнему
ноль):

E[w1w
T
1 ] = [

(√
αt

√
1− αt−1

)2
+
(√

1− αt

)2
]I =

= (αt(1− αt−1) + 1− αt) I = (1− αtαt−1) I
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Общая теория диффузионных моделей

Вывод формулы для qφ(xt|x0)
Подставляя полученную ковариацию в выражение для xt, получаем
следующую гауссиану:

xt =
√
αtαt−1xt−2 +

√
1− αtαt−1ϵt−2

Продолжая рекурсию до состояния x0, получаем:

xt =

√√√√ t∏
i=1

αix0 +

√√√√1−
t∏

i=1

αiϵ0

Таким образом, если определить ᾱt =
∏t

i=1 αi, можно показать, что:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ0

Другими словами, распределение qφ(xt|x0) можно записать как:

qφ(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I)
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Общая теория диффузионных моделей

Значение распределения qφ(xt|x0)

Прямой переход между состояниями x0 и xt
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Общая теория диффузионных моделей

Вспомнить всё

x = {xi}, xi ∈ Rp - входные данные.

Хотим выучить pθ(x) так, чтобы pθ(x) ≈ pdata(x)

Для любых непрерывных распределений p(x) и q(x):

Математическое ожидание: Eq(x) [p(x)] =
∫
p(x)q(x)dx

KL-дивергенция: DKL(p||q) =
∫
p(x)log p(x)

q(x)dx = Ep(x)log
p(x)
q(x)
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Общая теория диффузионных моделей

Применение теоремы Байеса

Для дальшейших математических выкладок нам удобнее сделать так,
чтобы направление q(xt−1|xt) совпадало с направлением pθ(xt−1|xt).
Решение — в использовании простой теоремы Байеса:

q(xt|xt−1) =
q(xt−1|xt)q(xt)

q(xt−1)

марковский⇒
процесс

q(xt|xt−1, x0) =
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)

Направление q(xt−1|xt) теперь совпадает с pθ(xt−1|xt) (см. синия стрелка на
рисунке).
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Общая теория диффузионных моделей

Нижняя вариационная граница (ELBO - Evidence
Lower BOund, или VLB - Variance Lower Bound)

ELBO обеспечивает оценку снизу (наихудший случай) для
логарифмической вероятности распределения данных (в нашем
случае pdata(x)). Запишем ELBO для вариационной диффузионной
модели:

ELBOφ,θ(x) = Eqφ(x1|x0)[log pθ(x0|x1)]
Восстановление (начальный блок)

−

− DKL(qφ(xT |x0)∥p(xT ))
Соответствие априорному распределению

(финальный блок)

−

−
T∑
t=2

Eqφ(xt|x0) [DKL(qφ(xt−1|xt, x0)∥pθ(xt−1|xt))]

Последовательность (переходные блоки)
Матюшин Дмитрий ИСП РАН 22 октября 2025 г. 16 / 121



Общая теория диффузионных моделей

Вывод формулы для ELBO

Обозначим через x0:T = {x0, . . . , xT } совокупность всех переменных
состояния от t = 0 до t = T . Априорное распределение p(x)— это
распределение для изображения x0, поэтому оно эквивалентно p(x0).
Таким образом, мы можем показать, что:

log p(x) = log p(x0) =
= log

∫
p(x0:T )dx1:T =

= log
∫ p(x0:T )

qφ(x1:T |x0)
qφ(x1:T |x0)dx1:T =

= logEqφ(x1:T |x0)

[
p(x0:T )

qφ(x1:T |x0)

]
(маргинализация по x1:T )
(умножение и деление на qφ(x1:T |x0))
(определение матожидания)

Неравенство Йенсена: для любой случайной величины X и любой
вогнутой функции f выполняется f(E[X]) ≥ E[f(X)].
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Общая теория диффузионных моделей

Вывод формулы для ELBO

Подставляя, что f(·) = log(·), мы можем показать, что:

log p(x) = logEqφ(x1:T |x0)

[
p(x0:T )

qφ(x1:T |x0)

]
≥ Eqφ(x1:T |x0)

[
log

p(x0:T )

qφ(x1:T |x0)

]

Из рисунка видно, что для разбиения p(x0:T ) надо использовать
условие для xt−1|xt:
p(x0:T ) = p(xT )

∏T
t=1 p(xt−1|xt) = p(xT )p(x0|x1)

∏T
t=2 p(xt−1|xt)
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Общая теория диффузионных моделей

Вывод формулы для ELBO

Что касается qφ(x1:T |x0), рисунок подсказывает, что надо
использовать условие xt|xt−1. Из условия марковского процесса
запишем:

qφ(x1:T |x0) =
T∏

t=1

qφ(xt|xt−1) = qφ(x1|x0)
T∏

t=2

qφ(xt|xt−1)
марковский

=
процесс

марковский
=

процесс
qφ(x1|x0)

T∏
t=2

qφ(xt|xt−1, x0)

Подставим выражения для p(x0:T ) и qφ(x1:T |x0) в неравенство Йенсена:

log p(x) ≥ Eqφ(x1:T |x0)

[
log

p(xT )p(x0|x1)
∏T

t=2 p(xt−1|xt)
qφ(x1|x0)

∏T
t=2 qφ(xt|xt−1, x0)

]

= Eqφ(x1:T |x0)

[
log

p(xT )p(x0|x1)
qφ(x1|x0)

]
︸ ︷︷ ︸

1

+ Eqφ(x1:T |x0)

[
log

T∏
t=2

p(xt−1|xt)
qφ(xt|xt−1, x0)

]
︸ ︷︷ ︸

2
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Общая теория диффузионных моделей

Преобразование произведения из слагаемого 2

Распишем произведение из второго слагаемого 2 :

T∏
t=2

p(xt−1|xt)
qφ(xt|xt−1, x0)

теорема
=

Байеса

T∏
t=2

p(xt−1|xt)
qφ(xt−1|xt,x0)qφ(xt|x0)

qφ(xt−1|x0)

=

T∏
t=2

p(xt−1|xt)
qφ(xt−1|xt, x0)

×
T∏
t=2

qφ(xt−1|x0)
qφ(xt|x0)

=

=

T∏
t=2

p(xt−1|xt)
qφ(xt−1|xt, x0)︸ ︷︷ ︸
без изменений

×
[
qφ(x1|x0)
qφ(x2|x0)

· qφ(x2|x0)
qφ(x3|x0)

· qφ(x3|x0)
qφ(x4|x0)

· ... · qφ(xT−1|x0)
qφ(xT |x0)

]
=

=

[
qφ(x1|x0)
qφ(xT |x0)

]
×

T∏
t=2

p(xt−1|xt)
qφ(xt−1|xt, x0)︸ ︷︷ ︸
без изменений
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Общая теория диффузионных моделей

Снова неравенство Йенсена

Вернемся к неравенству Йенсена, где мы получили слагаемые 1 и

2 :

log p(x) ≥ Eqφ(x1:T |x0)

[
log

p(xT )p(x0|x1)
qφ(x1|x0)

]
︸ ︷︷ ︸

1

+Eqφ(x1:T |x0)

[
log

T∏
t=2

p(xt−1|xt)
qφ(xt|xt−1, x0)

]
︸ ︷︷ ︸

2

= Eqφ(x1:T |x0)

[
log

p(xT )p(x0|x1)
qφ(x1|x0)

]
︸ ︷︷ ︸

1

+ Eqφ(x1:T |x0)

[
log

qφ(x1|x0)
qφ(xT |x0)

]
︸ ︷︷ ︸

2a

+

+Eqφ(x1:T |x0)

[
log

T∏
t=2

p(xt−1|xt)
qφ(xt−1|xt, x0)

]
︸ ︷︷ ︸

2b

=⃝
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Общая теория диффузионных моделей

Доказательство формулы для ELBO

=⃝Eqφ(x1:T |x0)

[
log

p(xT )p(x0|x1)
qφ(xT |x0)

]
︸ ︷︷ ︸

*

+Eqφ(x1:T |x0)

[
log

T∏
t=2

p(xt−1|xt)
qφ(xt−1|xt, x0)

]
︸ ︷︷ ︸

2b

Перепишем первое слагаемое * :

Eqφ(x1:T |x0)

[
log

p(xT )p(x0|x1)
qφ(xT |x0)

]
= Eqφ(x1|x0) [log p(x0|x1)]

+Eqφ(xT |x0)

[
log

p(xT )

qφ(xT |x0)

]
=

= Eqφ(x1|x0) [log pθ(x0|x1)]

Восстановление (начальный блок)

− DKL(qφ(xT |x0)∥p(xT ))
Соответствие априорному распределению

(финальный блок)
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Общая теория диффузионных моделей

Преобразование слагаемого 2b

Временно раскроем формулу математического ожидания:

Eqφ(xt−1,xt|x0)

[
log p(xt−1|xt)

qφ(xt−1|xt,x0)

]
=
∫
qφ(xt−1, xt|x0)

[
log p(xt−1|xt)

qφ(xt−1|xt,x0)

]
dx

Применим формулу совместного распределения для марковской
цепи: qφ(xt−1, xt|x0) = qφ(xt−1|xt, x0)︸ ︷︷ ︸

заносим в KL-дивергенцию

· qφ(xt|x0)︸ ︷︷ ︸
берем по нему матожидание

Теперь перепишем второе слагаемое 2b :

Eqφ(x1:T |x0)

[
log

T∏
t=2

p(xt−1|xt)
qφ(xt−1|xt, x0)

]
=

T∑
t=2

Eqφ(xt−1,xt|x0)

[
log

p(xt−1|xt)
qφ(xt−1|xt, x0)

]
=

= −
T∑
t=2

Eqφ(xt|x0) [DKL(qφ(xt−1|xt, x0)∥pθ(xt−1|xt))]

Последовательность (переходные блоки)
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Общая теория диффузионных моделей

Доказали формулу для ELBO

Итак, мы доказали, что ELBO для вариационной диффузионной
модели записывается так:

ELBOφ,θ(x) = Eqφ(x1|x0)[log pθ(x0|x1)]
Восстановление (начальный блок)

−

− DKL(qφ(xT |x0)∥p(xT ))
Соответствие априорному распределению

(финальный блок)

−

−
T∑
t=2

Eqφ(xt|x0) [DKL(qφ(xt−1|xt, x0)∥pθ(xt−1|xt))]

Последовательность (переходные блоки)
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Общая теория диффузионных моделей

Так чего же мы добились?

Хотим, чтобы xt стало N (0, I), когда t достаточно велико⇒
qφ(xt|x0) = N (xt|

√
ᾱtx0, (1− ᾱt)I) - аппроксимировали

переходы прямой диффузии гауссианами
«Развернули» направление действия qφ при помощи теоремы

Байеса: q(xt|xt−1) =
q(xt−1|xt)q(xt)

q(xt−1)

Оценили логарифмическое правдоподобие снизу:
log p(x) ≥ ELBOφ,θ(x)
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Общая теория диффузионных моделей

Формула для qφ(xt−1|xt, x0)

Распределение qφ(xt−1|xt, x0) имеет вид:

qφ(xt−1|xt, x0) = N (xt−1 | µq(xt, x0),Σq(t))

µq(xt, x0) =
(1− αt−1)

√
αt

1− αt
xt +

(1− αt)
√
αt−1

1− αt
x0

Σq(t) =
(1− αt)(1− αt−1)

1− αt
I = σ2q (t)I
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Общая теория диффузионных моделей

Вывод формулы для qφ(xt−1|xt, x0)

Применим теорему Байеса для qφ(xt−1|xt, x0):

qφ(xt−1|xt, x0) =
qφ(xt|xt−1)qφ(xt−1|x0)

qφ(xt|x0)

=
N (xt|

√
αtxt−1, (1− αt)I)N (xt−1|

√
αt−1x0, (1− αt−1)I)

N (xt|
√
αtx0, (1− αt)I)

Для упрощения предположим, что все векторы являются скалярами.
Тогда это произведение гауссиан становится:

qφ(xt−1|xt, x0) ∝ exp

{
−
(xt −

√
αtxt−1)

2

2(1− αt)
− (xt−1 −

√
αt−1x0)

2

2(1− αt−1)
+

(xt −
√
αtx0)

2

2(1− αt)

}

Здесь применена формула: N (x|µ, σ2) = 1√
2πσ2

exp(− (x−µ)2

2σ2 )
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Общая теория диффузионных моделей

Замена переменных

В целях упрощения выражения рассмотрим замену:

x = xt, y = xt−1, z = x0

a = αt, b = αt−1, c = αt

Рассмотрим показатель экспоненты как квадратичную функцию от
y:

f(y) = −(x−
√
ay)2

2(1− a)
− (y −

√
bz)2

2(1− b)
+

(x−
√
cz)2

2(1− c)
.

Независимо от порядка членов, результирующая функция остаётся
параболой. Максимум f(y)— это среднее значение
результирующего гауссового распределения. Найдем этот максимум
при помощи производной f ′(y):

f ′(y) =
ab− 1

(1− a)(1− b)
y +

( √
a

1− a
x+

√
b

1− b
z

)
.

Матюшин Дмитрий ИСП РАН 22 октября 2025 г. 28 / 121



Общая теория диффузионных моделей

Нахождение максимума через производную

Приравняв f ′(y) = 0, мы получаем:

y =
(1− b)

√
a

1− ab
x+

(1− a)
√
b

1− ab
z.

Отсюда мы знаем, что ab = αtαt−1 = αt, следовательно:

µq(xt, x0) =
(1− αt−1)

√
αt

1− αt
xt +

(1− αt)
√
αt−1

1− αt
x0.

Аналогично для дисперсии можем вычислить кривизну f ′′(y). Легко
показать, что:

f ′′(y) = − 1− ab
(1− a)(1− b)

= − 1− αt

(1− αt)(1− αt−1)
.

Обратная величина даёт нам ковариационную матрицу:

Σq(t) =
(1− αt)(1− αt−1)

1− αt
I.
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Общая теория диффузионных моделей

Доказали формулу для qφ(xt−1|xt, x0)

Итак, мы показали, что распределение qφ(xt−1|xt, x0) имеет вид:

qφ(xt−1|xt, x0) = N (xt−1 | µq(xt, x0),Σq(t))

µq(xt, x0) =
(1− αt−1)

√
αt

1− αt
xt +

(1− αt)
√
αt−1

1− αt
x0

Σq(t) =
(1− αt)(1− αt−1)

1− αt
I = σ2q (t)I
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Общая теория диффузионных моделей

Анализ формулы qφ(xt−1|xt, x0)

qφ(xt−1|xt, x0) полностью определяется через xt и x0. Нейронная сеть
здесь не требуется для оценки среднего значения и дисперсии!
Распределение qφ(xt−1|xt, x0) автоматически задаётся, если мы знаем
xt и x0.

Cлагаемое Последовательность - это сумма нескольких членов с
KL-дивергенцией (DKL). Проанализируем t-ю KL-дивергенцию:

DKL(qφ(xt−1|xt, x0)︸ ︷︷ ︸
знаем

∥ pθ(xt−1|xt)︸ ︷︷ ︸
Хьюстон, у нас проблема

).
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Общая теория диффузионных моделей

Распределение pθ(xt−1|xt)

qφ(xt−1|xt, x0) мы уже определили.
Смело предположим, что pθ(xt−1|xt) -
гауссиана. Имеем право выбирать pθ,
поэтому выбираем самое простое:

pθ(xt−1|xt) = N (xt−1 | µθ(xt), σ2q (t)I)
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Общая теория диффузионных моделей

Да кто такая эта ваша дисперсия?

pθ(xt−1|xt) = N (xt−1 | µθ(xt)︸ ︷︷ ︸
нейронка

, σ2q (t)I︸ ︷︷ ︸
фиксируем, как нам удобно

)

Мы предполагаем, что среднее значение µθ(xt) гауссианы pθ(xt−1|xt)
может быть определено с помощью нейронной сети. Выберем
дисперсию σ2q (t) такой же, как у qφ(xt−1|xt, x0)! А именно:

Σq(t) =
(1− αt)(1− αt−1)

1− αt
I = σ2q (t)I

Сопоставим qφ(xt−1|xt, x0) и pθ(xt−1|xt):

qφ(xt−1|xt, x0) = N (xt−1 | µq(xt, x0)︸ ︷︷ ︸
знаем

, σ2q (t)I︸ ︷︷ ︸
знаем

),

pθ(xt−1|xt) = N (xt−1 | µθ(xt)︸ ︷︷ ︸
нейронка

, σ2q (t)I︸ ︷︷ ︸
знаем

).
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Общая теория диффузионных моделей

Упрощение KL-дивергенции

KL-дивергенция между двумя гауссианами с одинаковыми
дисперсиями — это просто квадрат евклидова расстояния между
двумя средними значениями:

DKL(qφ(xt−1|xt, x0)∥pθ(xt−1|xt)) =
1

2σ2q (t)
∥µq(xt, x0)− µθ(xt)∥2

Пользуясь формулой для KL-двергенции, перепишем выражение для
ELBO:

ELBOθ(x) = Eq(x1|x0)[log pθ(x0|x1)]
Восстановление

−
нейронная сеть не нужна

DKL(q(xT |x0)∥p(xT ))
Соответствие априорному распределению

−

−
T∑
t=2

Eq(xt|x0)

[
1

2σ2q (t)
∥µq(xt, x0)− µθ(xt)∥2

]
Последовательность

Матюшин Дмитрий ИСП РАН 22 октября 2025 г. 34 / 121



Общая теория диффузионных моделей

Выводы из выражения для ELBO

Выражение для ELBO предполагает, что нам нужно найти сеть µθ,
которая каким-то образом минимизирует вот такую норму разницы:

1

2σ2q (t)
∥µq(xt, x0)− µθ(xt)∥2

Вспомним уравнение для µq(xt, x0):

µq(xt, x0) =
(1− αt−1)

√
αt

1− αt
xt +

(1− αt)
√
αt−1

1− αt
x0

DDPM - Denoising Diffusion Probabilistic Models, диффузионные
вероятностные модели денойзинга [5].
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Предсказание изображения

Поскольку µθ — это наша конструкция (выучиваемая сетью), мы
можем определить её более удобным образом. Вот первый вариант:

µθ(xt) =
(1− αt−1)

√
αt

1− αt
xt +

(1− αt)
√
αt−1

1− αt
x̂θ(xt).

Такая форма записи лежит в основе метода "Предсказание
изображения".
Подставим выражение для µθ(xt) в выражение для
DKL(qφ(xt−1|xt, x0)∥pθ(xt−1|xt)):

1

2σ2q (t)
∥µq(xt, x0)−µθ(xt)∥2 =

1

2σ2q (t)

∥∥∥∥(1− αt)
√
αt−1

1− αt
(x̂θ(xt)− x0)

∥∥∥∥2 =
=

1

2σ2q (t)

(1− αt)
2αt−1

(1− αt)2
∥x̂θ(xt)− x0∥2
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Упрощение формулы для
ELBO

Таким образом, ELBO можно упростить до следующего выражения
(учитываем только слагаемые, где требуется обучение):

ELBOθ = Eq(x1|x0)[log pθ(x0|x1)]−
T∑

t=2

Eq(xt|x0)

[
(1− αt)

2αt−1

2σ2
q (t)(1− αt)2

∥x̂θ(xt)− x0∥2
]

Распишем первое слагаемое, логарифмируя формулу плотности
вероятности нормального распределения и отбрасывая константные
слагаемые:

log pθ(x0|x1) = logN (x0|µθ(x1), σ
2
q (1)I)

def∝ − 1

2σ2
q (1)
∥µθ(x1)− x0∥2 =

= − 1

2σ2
q (1)

∥∥∥∥ (1− α0)
√
α1

1− α1
x1 +

(1− α1)
√
α0

1− α1
x̂θ(x1)− x0

∥∥∥∥2 α0 = 1

=

α0 = 1

= − 1

2σ2
q (1)

∥∥∥∥ (1− α1)

1− α1
x̂θ(x1)− x0

∥∥∥∥2 α1 = α1

= − 1

2σ2
q (1)
∥x̂θ(x1)− x0∥2
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Окончательное выражение для
ELBO

Подставляя выражение для первого слагаемого в формулу ELBO
получаем окончательную ELBO:

ELBOθ = −
T∑
t=1

Eq(xt|x0)

[
1

2σ2q (t)

(1− αt)
2αt−1

(1− αt)2
∥x̂θ(xt)− x0∥2

]
Функция потерь для модели диффузионного денойзинга (DDPM) -
Предсказание изображения :

θ∗ = argminθ
∑T

t=1
1

2σ2
q (t)

(1−αt)2αt−1

(1−αt)2
Eq(xt|x0)

[
∥x̂θ(xt)− x0∥2

]
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Обучение

Процесс обучения для реализации DDPM
Предсказание изображения :

Для каждого изображения x0 из тренировочного набора данных
выполните следующие шаги до сходимости:

1 Выберите случайную временную метку (timestamp)
t ∼ Uniform[1, T ].

2 Сгенерируйте образец (sample) xt ∼ N (xt|
√
αtx0, (1− αt)I), т.е.

xt =
√
αtx0 +

√
1− αtz, z ∼ N (0, I).

3 Выполните шаг градиентного спуска по параметру:

∇θ∥x̂θ(xt)− x0∥2
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Сэмплирование

Процесс сэмплирования (генерации шумовых образцов) для
реализации DDPM Предсказание изображения :
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Обучение

Процесс обучения для реализации DDPM
Предсказание изображения :
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Генерация (Inference)

Задача генерации заключается в том, чтобы сэмплировать
изображения из распределений pθ(xt−1|xt) на последовательности
состояний xT , xT−1, . . . , x1. Поскольку это обратный диффузионный
процесс, его нужно выполнять рекурсивно:

xt−1 ∼ pθ(xt−1|xt) = N (xt−1|µθ(xt), σ2q (t)I)

= µθ(xt) + σ2q (t)z =⃝, z ∼ N (0, I).

=⃝
(1− αt−1)

√
αt

1− αt
xt +

(1− αt)
√
αt−1

1− αt
x̂θ(xt) + σq(t)z
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 1. Генерация (Inference)

1 Начинаем с вектора белого шума xT ∼ N (0, I).
2 Повторяем следующие шаги для t = T, T − 1, . . . , 1.

Вычисляем x̂θ(xt) с использованием обученной сети x̂θ.
Обновляем состояние по следующему правилу:

xt−1 =
(1− αt−1)

√
αt

1− αt
xt+

(1− αt)
√
αt−1

1− αt
x̂θ(xt)+σq(t)z, z ∼ (0, I)
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 2. Предсказание шума

Другой подход: будем предсказывать шум, а не само изображение.
Давайте рассмотрим выражение xt через x0 и шумовое слагаемое.
Выразим из него x0:

xt =
√
αtx0 +

√
1− αtϵ0 ⇒ x0 =

xt −
√
1− αtϵ0√
αt

.

Подставим это в выражение для µq(xt, x0):

µq(xt, x0) =

√
αt(1− αt−1)xt +

√
αt−1(1− αt)x0

1− αt

=

√
αt(1− αt−1)xt +

√
αt−1(1− αt)

(
xt −

√
1−αtϵ0√

αt

)
1− αt

=

= ...алгебра... =
xt√
αt
− 1− αt√

1− αt
√
αt
ϵ0
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 2. Вывод ELBO

Таким образом, можем выбрать оценку для µθ так, чтобы она
соответствовала форме:

µθ(xt) =
xt√
αt
− 1− αt√

1− αt
√
αt
ϵ̂θ(xt).

Подставив выражения для µq(xt, x0) и µθ(xt) в уравнение для ELBO
через ∥µq(xt, x0)− µθ(xt)∥2, мы получаем новое выражение для
ELBO:

ELBOθ = −
T∑
t=1

Eq(xt|x0)

[
1

2σ2q (t)

(1− αt)
2αt−1

(1− αt)2
∥ϵ̂θ(xt)− ϵ0∥2

]
.
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 2. Предсказание шума. Обучение

Повторяем следующие шаги до сходимости:
1 Выбираем случайную временную метку (timestamp)
t ∼ Uniform[1, T ].

2 Генерируем образец (sample) xt ∼ N (xt|
√
αtx0, (1− αt)I), т.е.

xt =
√
αtx0 +

√
1− αtz, z ∼ N (0, I).

3 Выполняем шаг градиентного спуска по следующей функции:

∇θ∥ϵ̂θ(xt)− ϵ0∥2.
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 2. Генерация (Inference)

Соответственно, шаг генерации можно вывести так:

xt−1 ∼ pθ(xt−1|xt) = N (xt−1|µθ(xt), σ2q (t)I) = µθ(xt) + σ2q (t)z =

=
xt√
αt
− 1− αt√

1− αt
√
αt
ϵ̂θ(xt) + σq(t)z =

=
1
√
αt

(
xt −

1− αt√
1− αt

ϵ̂θ(xt)

)
+ σq(t)z, z ∼ (0, I)
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Методы генерации изображений. DDPM и DDIM

Реализация DDPM 2. Алгоритм генерации (Inference)

1 Начинаем с вектора белого шума xT ∼ N (0, I).
2 Повторяем следующие шаги для t = T, T − 1, . . . , 1:

Вычисляем ϵ̂θ(xt) с использованием обученной сети ϵ̂θ.
Обновляем состояние по следующему правилу:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− αt

ϵ̂θ(xt)

)
+ σq(t)z, z ∼ (0, I).
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Методы генерации изображений. DDPM и DDIM

Выбор гиперпараметров расписания αt

Введем βt = 1− αt

Основное требование - неубывание β0 ≤ ... ≤ βT и чтобы прямой
процесс сходился к N (0, I) в пределе по T .

В оригинальной статье DDPM [5] предложено брать T = 1000 и
линейное «расписание» с β1 = 10−4, ..., βT = 0.02.

В следующих работах было предложено «косинусное расписание»:
βt = clip(1− αt

αt−1
, 0.999), αt =

f(t)
f(0) , где f(t) = cos(

t
T +s

1+s ·
π
2 )

Сравнение зашумления при линейном (верняя строка) и косинуном
(нижняя строка) расписаниях
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Методы генерации изображений. DDPM и DDIM

Ускоряем DDPM

Генерация DDPM - много
итераций (т.к. марковская цепь).
Из-за этого процесс генерации
DDPM требует серьёзных
временных и вычислительных
ресурсов, в чем сильно уступает
тем же GAN-ам.

Рассмотрим улучшение алгоритма
DDPM, которое работает в разы
эффективнее при сравнимом
качестве результата.

DDIM - Denoising Diffusion Implicit
Models, диффузионные неявные
модели денойзинга [9].

Трилемма генеративного
обучения
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Методы генерации изображений. DDPM и DDIM

Идея DDIM

Обобщим прямой процесс диффузии, используемый DDPM [5],
который является марковским, на немарковские, для которых мы все
еще можем разработать подходящие обратные генеративные
марковские цепи.

Пересмотрим процесс генерации (inference), чтобы уменьшить
количество итераций для создания изображения.

Ключевое наблюдение: целевая функция DDPM зависит только от
q(xt|x0), но не напрямую от совместного распределения q(x1:T |x0).
Поскольку существует множество совместных распределений с
одинаковыми маргинальными распределениями q(xt|x0), мы
исследуем альтернативные (немарковские) процессы генерации.
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Методы генерации изображений. DDPM и DDIM

Вывод DDIM

Рассмотрим семейство распределений вывода Q, индексированное
вещественным вектором σ ∈ RT

≥0:

qσ(x1:T |x0) := qσ(xT |x0)
T∏
t=2

qσ(xt−1|xt, x0),

Рассмотрим:

qσ(xt−1|xt, x0) = N

√αt−1x0 +
√
1− αt−1 − σ2t ·

ϵ︷ ︸︸ ︷
xt −

√
αtx0√

1− αt︸ ︷︷ ︸
µσ(xt,x0)

, σ2t I


Функция для среднего значения µσ(xt, x0) выбрана таким образом,
чтобы гарантировать, что qσ(xt|x0) = N (

√
αtx0, (1− αt)I) для всех t.
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Методы генерации изображений. DDPM и DDIM

DDIM. Применение теоремы Байеса

Прямой процесс можно «развернуть» с помощью теоремы Байеса:

qσ(xt|xt−1, x0) =
qσ(xt−1|xt, x0)qσ(xt|x0)

qσ(xt−1|x0)
,

В отличие от DDPM [5], прямой процесс здесь больше не является
марковским, поскольку каждое xt может зависеть как от xt−1, так и
от x0. Величина σ управляет степенью стохастичности прямого
процесса: когда σ → 0, мы приходим к крайнему случаю, когда, зная
x0 и xt для некоторого t, xt−1 становится известным и
фиксированным.
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Методы генерации изображений. DDPM и DDIM

DDIM. Генеративный процесс

Определим обучаемый генеративный процесс pθ(x0:T ), где каждое

p
(t)
θ (xt−1|xt) использует знание qσ(xt−1|xt, x0).

Имеем xt ⇒ Предсказываем x0 ⇒ Получаем из него xt−1 через

обратное условное распределение qσ(xt−1|xt, x0) (см. предыдущий
слайд).
Вспомним, как мы получали образец (sample) xt в DDPM:

xt =
√
αtx0 +

√
1− αtϵ, ϵ ∼ N (0, I).

Выразим отсюда x0 и обозначим его параметризованной функцией
f :

x0(xt) = f
(t)
θ (xt) :=

xt −
√
1− αt · ϵ(t)θ (xt)√

αt
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Методы генерации изображений. DDPM и DDIM

DDIM. Генеративный процесс

Используя p(t)θ (xt−1|xt) ∼ qσ(xt−1|xt, x0), можем определить
генеративный процесс с фиксированным априорным
распределением pθ(xT ) = N (0, I), причем:

p
(t)
θ (xt−1|xt)

{
N (f

(1)
θ (x1), σ

2
1I), если t = 1

qσ(xt−1|xt, f (t)θ (xt)), при других t

Напомним, как определяется qσ(xt−1|xt, f (t)θ (xt)):

qσ(xt−1|xt, f
(t)
θ (xt)) = N

√
αt−1f

(t)
θ (xt) +

√
1− αt−1 − σ2

t ·

ϵ︷ ︸︸ ︷
xt −

√
αtf

(t)
θ (xt)√

1− αt

, σ2
t I


В этом выражении мы x0 заменили на f

(t)
θ (xt).

Мы добавляем гауссовский шум (с ковариацией σ2
1I) для случая t = 1,

чтобы гарантировать, что генеративный процесс поддерживается повсюду.
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Методы генерации изображений. DDPM и DDIM

DDIM. Шаг денойзинга

Из pθ(x1:T ) (предыдущий слайд) можно сгенерировать выборку xt−1

по выборке xt через:

xt−1 =
√
αt−1

(
xt −

√
1− αt · ϵ(t)θ (xt)√

αt

)
︸ ︷︷ ︸

Предсказанный x0

+
√
1− αt−1 − σ2

t · ϵ
(t)
θ (xt)︸ ︷︷ ︸

шаг в направлении xt

+ σtϵt︸︷︷︸
случайный

шум

где ϵt ∼ N (0, I)— это стандартный гауссовский шум, независимый
от xt.
Определим α0 := 1.
Изменили только генеративный процесс, используем ранее обученную
по методу DDPM модель.

Матюшин Дмитрий ИСП РАН 22 октября 2025 г. 56 / 121



Методы генерации изображений. DDPM и DDIM

Разные генеративные процессы

Рассмотрим случаи для σt:

σt =
√

(1−αt−1)
(1−αt)

√
1− αt - марковский процесс, DDPM.

σt = 0 для всех t: генеративный процесс - детерминированный за
исключением случая t = 1. Коэффициент перед шумом ϵt равен
нулю.
Полученная модель - диффузионная неявная модель денойзинга,
DDIM. Диффузионная - потому что обучена с использованием
процесса DDPM, несмотря на то, что обратный процесс
(генерации) является детерминированным.
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Генерация Text-to-Image

Text-to-Image диффузионные модели

Внутри Text-to-Image диффузионных моделей в связке работают
несколько инструментов. Рассмотрим 2 основных:

CLIP - отображает картинки и тексты в единое векторное
пространство. Возьмем из него Text Encoder.

U-Net - предсказывает шум ε(t)θ на картинке.
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Генерация Text-to-Image

CLIP - Contrastive Language-Image Pre-training

CLIP - модель от OpenAI, отображает картинки и тексты в единое
векторное пространство. Из него берем Text Encoder - будет
формировать внутреннее представление текстовой метки.
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Генерация Text-to-Image

U-Net - сверточная сетка для сегментации картинок

U-Net = Энкодер+Декодер. На
каждом уровне мы выделяем карту
признаков различных объектов
(формы, размеры, цвета и т.д.). При
Text-to-Image генерации принимает
на вход:

Зашумленное изображение xt

Text Embedding - внутреннее
представление текстового
условия (промпта)

Time Embedding - внутреннее
представление номера шага t,
модель обуславливается в том
числе на него.

Упрощенная схема работы Unet
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Генерация Text-to-Image

Особенности устройства U-Net
Основные блоки U-Net:

Residual Block - два
сверточных слоя с групповой
нормализацией

Multi-Head Attention Block -
делает модель «внимательной
к деталям» и к глобальным
зависимостям на
изображении

Down Block =
ResBlock+ AttnBlock

Up Block =
ResBlock+ AttnBlock

Middle Block = ResBlock+
AttnBlock+ ResBlock

Реализация:
https://nn.labml.ai/diffusion/ddpm/unet.html

Подробное устройство U-Net
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Генерация Text-to-Image

Латентные диффузионные модели

Схема реализации LDM
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Генерация Text-to-Image

Промежуточные итоги

Изученный материал:

Вывели формулы для переходных распределений в
диффузионном процессе;

Оценили снизу логарифмическое правдоподобие через ELBO;

Рассмотрели алгоритмы обучения и генерации DDPM;

Изучили DDIM как метод ускорения генерации при помощи
диффузионных моделей;

Обсудили схему реализации диффузионных моделей для
генерации изображений.
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Генерация Text-to-Image

Полезные ссылки

Методичка по диффузионным моделям от ШАД:
https://education.yandex.ru/handbook/ml/article/diffuzionnye-
modeli

Объяснение статьи DDPM (на английском):
https://www.youtube.com/watch?v=HoKDTa5jHvg

Под капотом Stable Diffusion:
https://habr.com/ru/articles/688204/
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Защита: схема робастного обучения

Применение диффузионных моделей для защиты
систем компьютерного зрения

Схема обучения робастного классификатора с использованием
сгенерированных данных [10];
Text-guided методы диффузионного редактирования:

1 SDEdit [7];
2 Prompt-to-Prompt [4];
3 IntructPix2Pix [1];
4 Null-text inversion [8].

Методы диффузионного редактирования в семантическом
латентном пространстве:

1 Discovering interpretable directions... [3];
2 Concept Sliders [2].
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Защита: схема робастного обучения

Робастное обучение с использованием
сгенерированных данных

Робастность - устойчивость к выбросам и помехам.

Рассмотрим метод повышения робастности нейронных сетей к
возмущениям, ограниченным по lp-норме (lp norm-bounded perturbations),
основанный на использовании сгенерированных данных [10].

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

,

где x = (x1, x2, . . . , xn) ∈ Rn, а p ≥ 1.

Цель: обучить модель на исходных (чистых) данных, чтобы она
могла создавать синтетические образцы.

Эти сгенерированные данные при объединении с реальными
образцами должны сокращать разрыв в робастности с моделями,
обученными на дополнительных реальных данных.
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Защита: схема робастного обучения

Формулировка задачи

Целевая задача заключается в минимизации adversarial risk,
определяемого следующим образом:

θ∗ = argmin
θ

E(x,y)∼D

(
max
δ∈S

[f(x+ δ; θ) ̸= y]

)
,

где

D— распределение данных x,

y - метки данных,

[·] - скобочная нотация Иверсона, [P ] =

{
1, если P истинно;

0, иначе.

f(·; θ)—модель с параметрами θ,

S —множество допустимых возмущений.

δ— допустимое значение возмущения.

Для возмущений, ограниченных по lp-норме, Sp = {δ : ∥δ∥p ≤ ϵ}.
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Защита: схема робастного обучения

Описание метода [10]

Обучение генеративной модели для создания синтетических
данных, приближенных к исходному распределению.

Применение не-робастного классификатора для присвоения
псевдометок (pseudo-labeling) этим данным.

Совместное обучение на исходных и сгенерированных данных с
целью улучшения робастности к возмущениям.
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Защита: схема робастного обучения

Формулировка метода

Оптимизационное уравнение для обучения робастного классификатора
f(·; θ):

θ∗ = argmin
θ

α · E(x,y)∈Dtrain

(
max
δ∈S

Lce(f(x+ δ; θ), y)

)
︸ ︷︷ ︸

исходные данные

+

+(1− α) · Ex∼D̂

(
max
δ∈S

Lce(f(x+ δ; θ), fNR(x))

)
︸ ︷︷ ︸

сгенерированные данные

α—фактор смешивания, определяющий долю данных из исходного набора,

Dtrain — исходный тренировочный набор,

D̂— сгенерированный набор данных,

fNR — не-робастный классификатор,

Lce —функция кросс-энтропии.
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Защита: методы с текстовым управлением

SDEdit - Stochastic Differential Editing

Метод стохастического дифференциального редактирования (SDEdit)
[7] использует диффузионную модель для редактирования
изображения путем добавления шума и последующего обратного
денойзинга:

SDEdit(x,K) = Rφ(. . . Rφ(Rφ(xK ,K),K − 1) . . . , 0),

где сначала выполняетсяK шагов диффузии, а затемK шагов
обратного денойзинга. Такой процесс можно использовать,
например, для очистки скрытых образцов от шумов.
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Защита: методы с текстовым управлением

Prompt-to-Prompt: задачи метода

Цель: редактирование изображений только через изменение
текстового промпта, без масок или дополнительных входов.

Проблема: даже небольшое изменение промпта в диффузионных
моделях приводит к полной потере исходной структуры
изображения.
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Защита: методы с текстовым управлением

Prompt-to-Prompt: основная идея

Ключевое наблюдение: кросс-внимание (cross-attention) связывает токены
промпта с пространственными областями изображения.

Решение: контролировать процесс генерации, инжектируя или
модифицируя карты кросс-внимания из исходного изображения.
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Защита: методы с текстовым управлением

Кросс-внимание в диффузионных моделях

На каждом шаге диффузии модель предсказывает шум, используя U-Net с
кросс-вниманием.

Кросс-внимание вычисляется как:

M = Softmax

(
QK⊤
√
d

)
, φ̂(zt) =MV

где Q— признаки пикселей,K,V — эмбеддинги токенов промпта.

КартаMij показывает, насколько пиксель i «внимает» токену j.

Эти карты определяют геометрию и композицию изображения уже на
ранних шагах диффузии.
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Защита: методы с текстовым управлением

Общий алгоритм Prompt-to-Prompt

Фиксируется случайное начальное состояние zT (seed).

Одновременно запускаются два процесса генерации:

Исходный промпт P ⇒ I

Изменённый промпт P ∗⇒ I∗

На каждом шаге t вычисляются карты вниманияMt иM∗
t .

Применяется функция редактирования: M̂t = Edit(Mt,M
∗
t , t).

В генерацию I∗ «вставляется» M̂t, сохраняя значения V от P ∗.
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Защита: методы с текстовым управлением

Типы текстового редактирования

Замена слова (Word Swap):

Пример: P = «велосипед» ⇒ P ∗ = «машина» .

Добавление фразы (Adding a New Phrase):

Пример: P = «замок у реки» ⇒ P ∗ = «детский рисунок замка у реки» .

Регулировка влияния слова (Attention Re-weighting):
Масштабирование карты конкретного токена: M:,j∗ ← c · M:,j∗ , c ∈
[−2, 2].
Позволяет плавно усиливать/ослаблять признак (например, «пуши-
стость»).
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Защита: методы с текстовым управлением

Преимущества и ограничения

Преимущества:

Не требует обучения, масок или оптимизации.

Поддерживает локальные и глобальные правки через текст.

Сохраняет структуру и композицию исходного изображения.

Применим и к синтетическим, и (через инверсию) к реальным
изображениям.

Ограничения:

Инверсия реальных изображений может быть неточной.

Низкое разрешение карт внимания (из-за bottleneck в U-Net).

Невозможно перемещать объекты в другую часть изображения.
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Защита: методы с текстовым управлением

Метод InstructPix2Pix: описание

Использует инструкции, а не полные описания результата.
Stable Diffusion v1.5 дообучена на сгенерированных парах
изображений и текстов.
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Защита: методы с текстовым управлением

InstructPix2Pix: формирование обучающего набора

Ручная разметка ( 700 примеров): изображения + исходные подписи +
инструкции редактирования + новые подписи.

GPT-3 для генерации 450 тыс.+ триплетов:

исходная подпись ⇒ инструкция редактирования + новая подпись

Stable Diffusion + Prompt-to-Prompt:

подпись до + подпись после ⇒ изображение до + изображение после
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Защита: методы с текстовым управлением

Постановка задачи Null-text inversion [8]

Глобальная цель – отредактировать исходное изображение, имея
исходную и новую текстовые метки.

Займемся инверсией изображения I, то есть получением как можно
более точного представления реальной картинки I в латентном
пространстве (в данном случае – получение соответствующей
шумовой картинки).

Качество инверсии проверяется с помощью реконструкции
исходного изображения I по исходной текстовой метке P .

Задача - сохранить «редактируемость» получаемого изображения.
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Защита: методы с текстовым управлением

Возможности Null-text inversion [8]

Редактирование изображения при помощи изменения текстовой метки
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Защита: методы с текстовым управлением

Возможности Null-text inversion

Редактирование изображения при помощи изменения текстовой метки
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Защита: методы с текстовым управлением

Диффузионные модели с текстовым управлением

Диффузионные модели, управляемые текстом, учатся находить
исходное изображение z0 по случайному шуму zT и текстовой метке
P .
На каждом шаге цепи модель учится предсказывать шум εθ.

Таким образом, на этапе обучения стоит задача минимизации
функции:

min
θ
||ε− εθ(zt, t, C)||22

где C = ψ(P) - эмбеддинг (некое внутреннее представление)
текстовой метки.
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Защита: методы с текстовым управлением

Детали реализации

Детерминированный DDIM-sampling:

zt−1 =

√
αt−1

αt
zt +

[√
1

αt−1
− 1−

√
1

αt
− 1

]
· εθ(zt, t, C)

Особенности Stable Diffusion:

Энкодера при прямом процессе диффузии, который на входе
«перегоняет» картинку в латентное пространство: z0 = E(x0)

Декодера при обратном процессе диффузии, который на выходе
«перегоняет» картинку из латентного пространства в
нормальное изображение: x0 = D(z0)

Входную текстовую метку P можно генерировать при помощи
модели генерации субтитров.
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Защита: методы с текстовым управлением

Два слова о Classifier-free guidance

Classifier-free guidance (CFG) [6] сочетает условную и безусловную
генерации, что соответствует вероятностям p(x|y) и p(x).
Введем обозначения:

ω - параметр (весовой коэффициент), отвечающий за
«соотношение» условной и безусловной генераций в CFG

∅ = ψ("") - эмбеддинг нулевого текста (null-text embedding)

Тогда предсказание шума в Classifier-free guidance выглядит так:

ε̃θ(zt, t, C,∅) = ω · εθ(zt, t, C)︸ ︷︷ ︸
условная генерация

+ (1− ω) · εθ(zt, t,∅)︸ ︷︷ ︸
безусловная генерация

Для Stable Diffusion дефолтное значение ω = 7.5
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Защита: методы с текстовым управлением

«Разворот» инверсии DDIM

В условиях малых шагов цепи процесс генерации DDIM может быть
«развернут» в обратном направлении (от z0 к zT ):

zt+1 =

√
αt−1

αt
zt +

[√
1

αt−1
+ 1−

√
1

αt
− 1

]
· εθ(zt, t, C)
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Защита: методы с текстовым управлением

«Ключевая» (pivotal) инверсия

Инверсия DDIM неплохо работает для безусловного случая (ω = 0).

Накладываем текстовое условие P ⇒ ставим ω > 1

(сильно опираемся на условную составляющую в CFG)

Экспериментально выяснено:

ω > 1 - накопление ошибки и ухудшение качества инверсии

ω = 1 - приемлемое качество реконструкции и хорошую
«редактируемость»

Назовем траекторию инверсии при ω = 1 «ключевой траекторией», и
будем считать ее опорой для дальнейшей оптимизации при ω = 7.5
(ω > 1).

Матюшин Дмитрий ИСП РАН 22 октября 2025 г. 86 / 121



Защита: методы с текстовым управлением

Приближение к «ключевой траектории»

Хотим приблизить траекторию с ω = 7.5 к «ключевой» (ω = 1), то
есть:

min ||z∗t−1 − zt−1||22

Оптимизация траектории
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Защита: методы с текстовым управлением

Оптимизация нулевого текста

Оптимизируем эмбеддинг нулевого текста ∅.
Варианты:

«Глобальная оптимизация нулевого текста» - когда мы
оптимизируем один эмбеддинг для всех шагов (timestamps).

«Оптимизация нулевого текста» = оптимизируем свой вариант
нулевого эмбеддинга для каждого шага t.

На выходе получаем оптимизированную последовательность
{∅t}Tt=1.
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Защита: методы с текстовым управлением

Алгоритм Null-text inversion [8]

Вход: Исходный текстовый эмбеддинг C = ψ(P), исходная картинка
I

Установим ω = 1

Найдем «ключевую траекторию» z∗T , . . . , z
∗
0 при помощи

инверсии DDIM картинки I
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Защита: методы с текстовым управлением

Алгоритм Null-text inversion [8]

Установим ω = 7.5

Начальная инициализация: zT = z∗T , ∅T = ψ()

for t = T, T − 1, . . . , 1
{

for j = 0, . . . , N − 1
{

Градиентная оптимизация ∅t:
∅t = ∅t − η∇∅||z∗t−1 − zt−1(zt,∅t, C)||22

}
zt−1 = zt−1(zt,∅t, C),
∅t−1 = ∅t

}

Выход: шумовой вектор zT и оптимизированная последовательность
{∅t}Tt=1.
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Защита: методы с текстовым управлением

Иллюстрация алгоритма
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Защита: редактирование в латентном пространстве

Интерпретируемые направления в латентном
пространстве DM [3]

Цель: найти интерпретируемые и дезентанглированные направления в
латентном пространстве безусловных диффузионных моделей (DMs).

Проблема: некоторые признаки изображений проблематично описать
текстом.

Пример: описать текстом изменения на медицинском изображении.

Решение: использовать h-space— пространство активаций bottleneck-слоя
U-Net на всех шагах диффузии.

Преимущества:

Не требует CLIP, промптов, fine-tuning или изменения архитектуры.

Поддерживает как глобальные, так и локальные правки.

Работает с предобученными моделями «из коробки».
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Защита: редактирование в латентном пространстве

h-space: семантическое латентное пространство DM

h-space = {hT , hT−1, . . . , h1}— набор bottleneck-активаций U-Net на
каждом шаге диффузии.

Каждый ht ∈ RC×H×W (например, 512× 8× 8).

Ключевые свойства h-space (векторная арифметика) [3]:

Направление∆hT :1 вызывает один и тот же семантический
эффект на разных изображениях.

Масштаб γ контролирует силу правки: hedit = h+ γ · v.
Аддитивность: комбинация направлений даёт
комбинированные правки.

Редактирование: вносим сдвиг∆ht в процесс генерации (в обе
компоненты Pt и Dt).
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Защита: редактирование в латентном пространстве

Схема формирования h-space

Схема реализации DM
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Защита: редактирование в латентном пространстве

Методы редактирования изображений в латентном
пространстве: векторная арифметика
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Защита: редактирование в латентном пространстве

Unsupervised-исследование направлений

1. PCA в h-space:

Вычисляем главные компоненты по множеству случайных h(i)T :1.

Получаем глобальные семантические направления: возраст,
пол, поза, улыбка.

Интерпретируемость появляется автоматически без аннотаций.

2. Анализ Якобиана для одного изображения:

Через сингулярное разложение Якобиана Jt = ∂εθ/∂ht находим
направления, максимально изменяющие предсказание шума εθ.

Результат: локальные правки — открытие глаз, движение
бровей и т.п.
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Защита: редактирование в латентном пространстве

Supervised исследование и «распутывание»
направлений

Supervised метод:

Генерируем пары изображений (x−, x+) с/без атрибута (например,
«очки»).

Вычисляем направление как среднюю разность:

v =
1

n

n∑
i=1

(h+i − h
−
i )

Атрибуты можно получать от предобученного классификатора
(например, CelebA).

«Распутывание» направлений:

Если направление v1 влияет и на нежелательный атрибут v2,
проецируем:

v1⊥2 = v1 −
⟨v1, v2⟩
∥v2∥2

v2
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Защита: редактирование в латентном пространстве

Преимущества и ограничения

Преимущества:

Работает с безусловными DM без текста или CLIP.

Поддерживает глобальные и локальные правки.

Направления переносятся между изображениями.

Простая линейная алгебра — нет оптимизации и обучения.

Эффективно даже при малом числе примеров (в supervised
случае).

Ограничения:

Лучше всего работает на структурированных доменах
(например, лица).

На неструктурированных данных (церкви, комнаты) PCA даёт
менее интерпретируемые направления.

Требует доступа к внутренним активациям U-Net (но не
модификации модели).
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Защита: редактирование в латентном пространстве

Метод Concept Sliders [2]

позволяет создавать интерпретируемые слайдеры для точного
управления атрибутами изображений;

находит низкоранговые направления в латентном пространстве ДМ,
соответствующие конкретным концептам;

слайдеры обучаются на небольшом наборе текстовых подсказок или
пар изображений;

слайдеры реализованы как LoRA-адаптеры, которые можно включать
во время инференса без изменения основной модели.
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Атака: PGD и Diff-PGD

Методы атаки систем компьютерного зрения

Рассмотрим следующие типы атак:

Нормированные атаки - Fast Gradient Sign Method (FGSM) и Projected
Gradient Descent (PGD), ограничивают норму lp.

Проблема: вредоносные картинки расходятся с естественным распределением
данных⇒ изображения могут быть очищены от атаки.

Семантические атаки - например: генерация вредоносных картинок в HSV
пространстве, поворот 2D изображения, изменение его яркости и т.д.

Проблема: неэффективны.

Кастомизированные атаки с использованием естественного стиля - AdvCAM и
AdvArt, стараются соханить стилевое соответствие образцов (используют
состязательные методы генерации).

Проблема: нужна тонкая подстройка и результат может оказаться
нереалистичным.

Атаки в физическом мире - осложняются факторами поворота, освещения,
расстояния обзора и т.д.

Проблема: Неестественность изображений.
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Атака: PGD и Diff-PGD

Градиентные методы генерации атакующих
изображений

a) Традиционная градиентная генерация

b) Кастомизированная градиентная генерация: добавлен lp - loss
стиля (отличие от текствого промпта p) и lr - loss реалистичности

c) Diff-PGD framework, о котором пойдет речь
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Атака: PGD и Diff-PGD

Подход PGD для глобальной атаки

Введем обозначения:
x - чистое изображение;
y - текстовая метка;
fθ(x) - выход целевой модели классификации,
параметризованной θ.

Задача: создать атакующий образец xadv, способный обмануть
модель классификации.
Традиционные методы (PGD) используют градиент функции потерь:

g = ∇xl(fθ(x), y)

где l—функция потерь (loss).
Шаг обновления в PGD с параметром η и количеством итераций n
записывается так:

xt+1 = PB∞(x,ϵ)

[
xt + η · sign(∇xt l(fθ(x

t), y))
]
,

где PB∞(x,ϵ)(·)— оператор проекции на шар ℓ∞ с радиусом ϵ.
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Атака: PGD и Diff-PGD

Да кто такая эта ваша проекция на шар?

x - оригинальное изображение
xadv - атакующее изображение

Шар l∞ определяется условием:

∥xadv − x∥∞ ≤ ε
Проектирование на этот шар делается для того, чтобы сохранить
невидимость изменений для человека, ограничивая их
интенсивность.

Таким образом, если новый градиентный шаг, который стремится
сделать изображение «более атакующим», выходит за пределы этого
шара, его компоненты подлежат ограничению (т. е. проекции) так,
чтобы максимальное отклонение в любом пикселе не превышало ε.

Проще говоря, мы не даем xadv выйти за пределы ε-окрестности
реального изображения x.
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Атака: PGD и Diff-PGD

Итерационный шаг PGD
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Атака: PGD и Diff-PGD

Проективный градиентный спуск на основе
диффузии (Diff-PGD)

Метод Diff-PGD [11] комбинирует традиционный PGD с
преимуществами диффузионной модели для генерации
реалистичных атакующих образцов. Этот метод включает 4
расширения:

1 Базовый метод Diff-PGD для глобальной атаки: Атака по всему
изображению, как в случае с обычным PGD.

2 Региональные атаки (Diff-rPGD): Внесение изменений только в
определенные области изображения с использованием маски.

3 Кастомизированные атаки, основанные на стиле (Diff-PGD с
поддержкой стиля): Генерация атакующих образцов с учетом
стилевых ограничений, таких как стиль заданного образца.

4 Атаки на физический мир - сделать изображения устойчивым к
плохому освещению, углу обзора и т.д.
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Атака: PGD и Diff-PGD

Вспомним SDEdit

Метод стохастического дифференциального редактирования (SDEdit)
[7] использует диффузионную модель для редактирования
изображения путем добавления шума и последующего обратного
денойзинга:

SDEdit(x,K) = Rφ(. . . Rφ(Rφ(xK ,K),K − 1) . . . , 0),

где сначала выполняетсяK шагов диффузии, а затемK шагов
обратного денойзинга. Такой процесс можно использовать,
например, для очистки скрытых образцов от шумов.
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Атака: PGD и Diff-PGD

Базовый Diff-PGD для глобальной атаки

В Diff-PGD вместо оптимизации функции потерь по исходному
изображению x проводится оптимизация по очищенному
изображению x0, которое восстанавливается с использованием
SDEdit:

xt0 = SDEdit(xt,K),

гдеK — количество шагов обратного денойзинга. Это позволяет
сохранить основные свойства естественных изображений, так как на
каждом шаге оптимизации используется денойзинг с
использованием диффузионной модели, что уменьшает шум и делает
образец более реалистичным.
Итерационный шаг Diff-PGD тогда можно записать как:

xt+1 = PB∞(x,ϵ)

[
xt + η · sign(∇xt l(fθ(x

t
0), y))

]
,

где xt0 = SDEdit(xt,K).
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Атака: PGD и Diff-PGD

Итерационный шаг Diff-PGD
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Атака: PGD и Diff-PGD

Примеры редактирования изображения при помощи
классического PGD и Diff-PGD
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Атака: PGD и Diff-PGD

Примеры редактирования изображения при помощи
классического PGD и Diff-PGD
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Атака: PGD и Diff-PGD

Расширение Diff-PGD для атак в определенных
регионах (Diff-rPGD)

Diff-rPGD нацелена на изменение только регионов, определённых
маскойM , сохраняя остальные части изображения без изменений:

(1−M) ◦ xadv = (1−M) ◦ x,

где ◦ обозначает поэлементное умножение, аM — бинарная маска.
КогдаM = 1 на всём изображении, Diff-rPGD сводится к
стандартному Diff-PGD.
При итеративном процессе SDEdit используется стратегия замены
(replacement), чтобы промежуточные образцы в обратном процессе
диффузии лучше сочетались с остальной частью изображения:

xti =M ◦ xti + (1−M) ◦ q(xti|xt), (1)

где q(xti|xt)— распределение прямого процесса диффузии.
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Атака: PGD и Diff-PGD

Алгоритм Diff-rPGD
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Атака: PGD и Diff-PGD

Кастомизированные атаки с определенным стилем

Сначала создается промежуточный образец x̂s, который приближен
к стилю xs с использованием функции потерь стиля ls(x, xs), после
чего применяется Diff-PGD для получения атакующего образца xadv.
Функция потерь стиля определяется как:

ls(x, xs) =
∑
h∈Hs

∥G(fh(x))−G(fh(xs))∥22,

где G(fh(·))— матрица Грама, описывающая промежуточные
стилистические признаки изображения, а Hs — слои сети для
извлечения признаков стиля.
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Атака: PGD и Diff-PGD

Алгоритм генерации атакующего образца
определённого стиля

Для генерации скрытого образца применяется следующая
двухэтапная процедура:

1 Оптимизация стиля для получения промежуточного образца x̂s,
близкого по стилю к xs.

2 Применение Diff-rPGD для создания скрытого образца на
основе x̂s.

Здесь мы используем тот же принцип проекции на шар.
Итоговый атакующий образец xadv не отдалится от стилевого x̂s
больше чем на ε:

∥xadv − x̂s∥∞ ≤ ε

Матюшин Дмитрий ИСП РАН 22 октября 2025 г. 114 / 121



Атака: PGD и Diff-PGD

Атаки в физическом мире при помощи Diff-PGD

Цель: создать физический объект (например, наклейку или патч),
который при размещении в реальной сцене «обманывает» целевую
модель.

Хотим повысить устойчивость к физическим условиям (изменение
освещения или угла обзора)⇒ вставляем «физический адаптер».
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Атака: PGD и Diff-PGD

«Физический адаптер» для Diff-PGD

Цифровые атаки: ограничиваем норму ℓ∞
Физический адаптер: применяем T - набор случайных
преобразований, которые симулируют изменения окружения.

lDiff-Phys(x) = ladv (Eτ∼T [τ(SDEdit(x,K))]) ,

где τ - случайные трансформации (изменения фона, сдвиги,
освещенность и масштаб). Эти изменения делают патч более
устойчивым в физическом мире.
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Атака: PGD и Diff-PGD

Процесс генерации патча для атаки в физическом
мире

1 Определяется начальная область на изображении, где будет
располагаться патч;

2 Применяются физические трансформации T (изменение
масштаба, яркости и т.д. для симуляции различных условий);

3 Оптимизация патча в цифровой симуляции,
4 Печать патча и размещение в реальной среде для тестирования
на целевой модели классификации.
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Атака: PGD и Diff-PGD

Сравнение генерации патчей для физического мира
разными методами

Зеленая рамка - исходные картинка и объект,

Синяя рамка - AdvPatch,

Красная рамка - AdvCam,

Черная рамка - Diff-Phys.
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Атака: PGD и Diff-PGD

Подведем итоги

Диффузионные модели - мощный инструмент для генерации
изображений: качественно, разнообразно, относительно быстро;

Можно делать Text-to-Image генерацию, определенным образом
давая диффузионной модели эмбеддинг текста.

Диффузионные модели используются для защиты систем
компьютерного зрения. В рамках этой задачи используется
множество методом редактирования изображений.

Диффузионные модели используются для атаки систем
компьютерного зрения (например, в методе Diff-PGD), что
помогает добиться большей реалистичности атакующих
образцов
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